will be eligible to the "three, five, and ten year contest" that we hope to inaugurate.

As the work progresses many suggestions for improving the details of the plan will doubtless be made. These will be gratefully received and utilized wherever feasible. The main idea is to enlist the interest of the farmer in studying the successful management of his farm and to this end inaugurate a contest where the farm as a whole is the unit under consideration, and where recognition will be given to those farmers who approach a certain desired standard. This we hope will not only be encouraging to them but stimulating to others in the successful management of farms.

THE IMPORTANCE OF TESTING OUR PURE SEED GRAINS PREVIOUS TO SOWING THE SEASON'S CROP.

H. L. Post, Secretary Richland County Order, Sextonville.

The importance of testing our seed grains previous to sowing and planting the season's crop can not be overestimated. How are we to get the full benefit of our pure bred seeds, that have taken the College of Agriculture years to bring up to the present high standards, if we are not reasonably sure that every kernel put in the soil is going to produce a strong, healthy plant. In Wisconsin alone the annual loss incurred by the planting of untested seed amounts to hundreds of thousands of dollars. Why, then, do farmers continue this wasteful practice, when if they would give a little time during the early spring and test their seed, their increased yield would make it the most profitable piece of work done? The testing of small grains and grass seeds is perhaps not so commonly practiced as the testing of corn, yet each farmer should do this before sowing. In a great number of cases the poor catch of grass seed or failure of small grains to grow is due to the sowing of seed of low vitality, which might have been avoided had the seed been tested previous to sowing.
Of course with the small grains a lower germinating per cent may be used than with corn, for they may be sowed thicker; but do not use poor seed under any circumstances. In testing the small grains, it is necessary to get a uniform sample of the recleaned seed by thoroughly mixing and if one has a large quantity to sow it would be best to take several samples from the same lot and put in a germinating box such as used for corn. This is a much easier job than testing each ear of corn we are going to plant. A great many are under the impression that it is an endless job to test each ear of seed corn, and that it does not pay because father never tested his seed corn before planting, and that a stand of 75% or 80% is about all that can be expected, yet experiments show that under favorable conditions of weather, insect pests, etc., there is no reason why a stand of corn should be less than 95%. Fifteen average ears of seed corn will plant an acre in check rows 3 feet 8 inches each way and will make 3,240 hills of corn. Assuming four stalks in the hill and allowing 5% loss from uncontrollable causes, a perfect stand would be 12,312 stalks on each acre. Now to plant corn that tests only 85%, which by the way is above the average untested seed corn germinating per cent, would mean a loss of 1,236 stalks on every acre, and then too, there would be a much larger per cent of weak or barren stalks that produce only small nubbins or nothing at all. Don’t you think you could afford to do a little extra work, at a time of year when work is not so rushing, test your seed corn to save over 1000 ears or 10 bushels on every acre you plant. Why work just as hard to produce nine-tenths of a crop or less as a full crop? The work of testing each ear of seed corn is not such a tedious task after all, in fact after you are once started it has a real fascination; one finds some very interesting things if a close observer. It is not the best looking ear of corn that is the best in the germinating test. Perhaps you will notice a difference in the vitality of the corn picked early and that picked later, that placed near the ceiling and that nearer the floor of the drying room, or that hanging in the sunlight and that where it is not so light. We usually start testing our seed corn and grains sometime in January, as we test all that we plant and sell for seed. Right here let me add a word of caution, be
sure the frost is entirely out of your corn before you put any in the test as very unsatisfactory results will be obtained if the corn is frozen. The first requisite in seed testing is a germinating box, of which there are several on the market and others described in various bulletins issued. After trying several methods we have found the one most satisfactory is a box about 18x36 inches and 4 or 5 inches deep. In the bottom of which place about 2 inches of sand, then put 3 or 4 thicknesses of burlap, over which stretch tightly a piece of heavy muslin and tack to the sides and ends of the box. Then with an indelible pencil, draw two inch squares and number them. For a cover use several thickness of burlap, then place a piece of iron roofing cut to fit the box, over all to hold the moisture. After the corn has been selected for testing place on a table or floor of the drying room with the tips all pointing from you and a nail driven between each ear, numbering each space. By placing the ears in this manner they are in a position so the sampling may be done rapidly and systematically. Great care should be exercised when removing the kernels from the ear, not to injure the germ. Now take out four kernels from each ear and place in the germinating box in the square numbered correspondingly to that of the ear. In taking out these 4 kernels we take one from near the butt, then by about a quarter turn of the ear take out the second, just about a fourth of the way toward the tip. By repeating this when we have taken out the four kernels we have one out of each quarter of the circumference and length of the ear. After the sampling is completed and covering put over the kernels in the germinating box, it should be thoroughly dampened, then the tin cover placed over all to hold the moisture. We allow 6 or 7 days before making determinations, during which time the germinating box should be held at as even a temperature as possible, anywhere between 65 and 85 degrees F. It is important that the temperature does not get too low during the night; a drop much below 55 degrees will seriously affect the reliability of the test. At the end of this time remove cover from the box, being careful not to disturb the kernels in the squares. Beginning with space No. 1 in germinating box examine the kernels in each square. This part of the testing must be done with consider-
able care and requires good judgment as kernels will be found in all stages of development. If the four kernels in any square, each show good healthy sprouts, the ear which they represent should be retained for seed. If one of the kernels fail to germinate or gives even a weak root or stem sprout the ear from which it was taken should be discarded as unfit for seed. The main thing to remember in checking up your test is to use only those ears for seed from which every kernel tested has given a strong healthy sprout.

With our pure bred seeds, that have taken hard working men years to increase their yields to their present high average, let us, as members of the Wisconsin Experiment Association, show our appreciation of their labors by at least testing our seed before planting the season's crop, that we may obtain as great a yield as possible, expressing in this way our gratitude to them.

________________________

IMPORTANCE OF THE FARM INSPECTION WORK AND HOW SHALL IT BE CARRIED OUT.

E. B. Skewes, Sec. Racine County Order, Union Grove.

The subject assigned me deals with certain phases of the problem of disseminating high bred seeds. In the years since its organization, the Wisconsin Agricultural Experiment Association has been an effective instrument for scattering station bred seeds among the farmers of the state and to some extent among those of the nation. But the growth of the association to its present large membership has created a difficulty and offers an opportunity. The difficulty lies in growing enough of the improved seeds to give all members an equal chance. The opportunity lies in the possibility of selecting from among our members those best prepared to serve in this work of dissemination.

It is doubtless true that the more highly developed a strain of plants may be, the more rapidly will it deteriorate under adverse conditions of propagation. It is also true that not all growers, even among members of our association, are prepared