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PREFACE

The logic and assumptions which today comprise the ‘foundations
of mathematics’ often lead to paradox—the name given to a logical
but patently absurd conclusion. One may regard paradox with awe,
or one may look for underlying errors.

Orthodox mathematical belief today holds that we may take a
solid sphere of any fixed size, divide it into a few pieces, and then
reassamble those pieces into two solid spheres, each of the same
fixed size as the first. This theorem, due to S. Banach and A, Tarski
in 1924, has been acclaimed as a triumph of modern methods.
Logically similar notions weave through the “new mathematics”
taught everywhere today.

In the 1924 paper the authors depend explicitly on the work of
F. Hausdorff, who was in turn building on Georg Cantor’s theory
of sets. So either the sphere surgery can be done, and one equals
two, or we had better have another look at Cantor’s sets. Here I
present an analysis, made possible by modern semantics, of a cen-
tral fallacy in Cantor’s theory. The reader will follow my argument
without difficulty if he understands that certain endless sequences
of fractions have finite limits; e.g., one-half plus one-quarter plus
one-eighth, and so on, never totals more than one, no matter how
far extended.

This paper expands on the following topics:

Numbers Generally. The Archimedean test for equality or in-
equality of two quantities enables us to determine, no matter what
anyone may claim, whether some given form actually defines a
numerical value, or not,

Scalars. The adjective “real” has traditionally been applied to an
important technical class of numbers, confusing students and
promulgating philosophical haggles. The exact synonym “scalar”
number is adopted for its structural implications.

Endless Convergent Summations. General examples of the “one-
half plus one-quarter” type of sequence are introduced, along with
the compact modern notation in which we can exactly express them.
We find that all of the scalar numbers can be so expressed, under
the summation symbol. On the other hand, decimals, while prac-
tical and convenient, happen to be inadequate to this task.
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Given Numbers. To have a “given number”, as it is casually put
in the literature, some Jones must give it to some Smith. This
human condition limits the possibilities in interesting ways.

Permutations. This is the technical word for what we commonly
call arrangements, such as the way in which a set of books might
be arrayed along a short shelf, ordered say by authors, or by titles,
ete. Simple laws define how much total variety of arrangement is
possible given, say, twenty books and a shelf which will hold five.

“New Permutations”. With the laws just mentioned, we are in a
position to refute immediately any claim that someone could pro-
duce a new, unexpected, and unpredictable permutation within an
already defined system. From this framework of secure knowledge,
we are prepared to examine critically Georg Cantor’s famous
“proof” that the scalar number system is irreparably disordered
and disarrayed.

Cantor’s Diagonal Argument. This is the cornerstone of Cantor’
century of influence on mathematics. He claims always to generate
“new numbers”, not already in any conceivable list. From our
permutational point of view, his manipulations are not impene-
trable. We and Cantor agree on the elements (books and shelf)
of a system. We then display to Cantor all permutations of the
books taken, say, three at a time (a permutation of length 3). In
order to find a “new” permutation, Cantor insists on using a greater
length—namely, four. Thereupon we display to him all permuta-
tions of length four; he retreats to the claim that he should be
allowed five. Before modern semantic methods made the present
analysis possible, Cantor’s ability to produce “new” arrangements,
while unseen he increased the length of the arrays to which he had
access, appeared almost magical. His claims were accepted—never
explained.
 Decimal Expansions. The illusion that Cantor has each time
come up with a “new number” involves a misreading of the decimal
expressions he uses. By a straightforward inspection of decimals,
as well as by a general professional consensus, many scalar num-
bers cannot be expressed exactly in decimal form. He who fails,
through a lack of rigor, to remember the limitations of the decimal
system, may imagine that he sees in Cantor’s truncated decimal
forms the “objective real numbers”; he slides into Cantor’s subtle
mistake.

The literature contains many dire predictions that parts of
higher mathematics “would collapse” if any defect in Cantor’s
theory were ever found. My personal communications with pro-
fessionals show that many of them share this fear. What are the
facts? Nothing solid in mathematics is going to collapse. Certain
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passages in special arguments may have to be modified. New, pos-
sibly fruitful, insights may result.

INTRODUCTION

Georg Cantor, a German mathematician of the late 19th century,
fathered the ‘theory of transfinite sets’. His remarkable ideas were
scathingly attacked by his contemporary, the illustrious Kronecker.
Poincare, considered the leading mathematician of the time, was at
first intrigued but later became bitterly disillusioned and declared
the thing to be a mathematical digsease. But Cantor finally won
authoritative acclaim from Hilbert and Bertrand Russell, and car-
ried the day. With rare exceptions, critics have been silent to this
day.

Direct results of Cantor’s theory now appear even in elementary
textbooks, and a long deductive chain runs from it to the ‘Banach-
Tarski’ spheres. In a roundabout but hopefully heuristic way, we
want to have a good look at the cornerstone of Cantor’s system.
We are concerned here only with the set-theoretic issues; the
quality and importance of some other work done by Cantor is, I
believe, beyond dispute.

Numbers generally. Archimedes first gave formal expression to
our common intuition as to what constitutes a number or, rather,
how we can tell in some case whether we have a number or not.
It is often called Archimedes’ principle; it is in the strictest modern
sense an operational test. Briefly, if C and D are numbers, then
just one of the following three caseg holds:

a) C is greater than D (C > D),
or b) C is equal to D (C = D),
or ¢) is less than D (C < D).

If, for whatever reason in a given case, we find that we cannot
determine which of these three condition holds, then it follows that
C, or D, or both, does not define a number.

It frequently happens, both in practice and in theoretical work,
that we cannot make the Archimedean test because, while we have
some information about a number, we do not have enough to define
it exactly. That is, we may know a range within which the number
lies, but nothing more. If C is “4 and a little more”, the test may
fail. Likewise if C is “4 + a remainder”. And particularly, if C is
given in an incomplete form, such as 4.32---, then it is in fact
impossible to determine whether C is greater than, equal to, or
less than 173/40, for example. The meaning of the familiar “ --- ”
can become rather subtle, when we get into endless (infinite) se-
ries. A small difference between C and D can make a lot of differ-
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ence in results. If the expression “C — D” appears in a denominator,
then our answer may be negative, or positive, or meaningless,
depending upon that “little difference”.

The exact definition of a number need not be simply in digits.
Not only are operator symbols such as + and / regularly used in
defining numbers but purely verbal sentences or longer contexts
may be used. Anything we can put in mathematical symbols we
can also eventually manage to say. “A circle’s radius over its cir-
cumference” defines in simple English exactly one number; by
routine operations we can actually compare “half the reciprocal
of pi” with any other given value, for equality or specific inequality,
as required.

The full scalar number system. All the numbers referred to here-
under will be secalar numbers. One scalar number, or scalar, defines
exactly one point on a lineal scale which is endless both left and
right of a zero point and on which a unit length is assigned. A
scalar defines one point. Conversely, any fixed point on the line,
even if it has been defined only by geometric operations or other-
wise, is associated with one unique scalar. Historically, in cases
where a geometric or algebraic definition came first, the develop-
ment of the required numerical scalar became an urgent need. Such
needs have always been met and today the scalar number system is
considered complete. All modern theories in calculus and analysis
assume and depend upon this fact.

The foregoing statements imply that every scalar number is fully
defined, single-valued, fixed and constant. I will rigorously adhere
to that connotation. When a domain of definitions, or a range of
values, is meant, those terms, along with ‘function’ and ‘variable’
will be used. One may argue with considerable justification that
the multi-level structure of both mathematical and nonmathematical
language make some ambiguity inevitable, I will say that it is diffi-
cult to be consistently clear but I will try anyhow.

A scalar number is additive in structure. Any two scalars add
to form a single scalar. From the theory of algebraic fields: Addi-
tion is postulated, multiplication is repeated addition, subtraction
is inverse addition and division is inverse multiplication. As would
be expected, the latest forms of scalars to evolve are the most gen-
eral and have an elaborate composition. However, an organized
hierarchy of transformations permits us to express even the earliest
and simplest scalars precisely in the latest general forms. For the
exact representation of scalars generally, two specific numerical
frames are available: Continued fractions, and endless series. It is
of interest that we can without loss of meaning interchange the
adjectives, to say endless fractions and continued series. Also, many
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people would prefer “infinite” to “endless”—one may consult the
dictionary and his own taste. .

Endless convergent summations. Although the continued frac-
tions are of profound number-theory interest, bounded summations
of endless series of diminishing fractional terms are more familiar
and fully adequate for our purpose. In the powerful notation of
modern mathematics, the notion of an endless convergent summa-
tion condenses to:

N
(1) S, a scalar, = lim 3 F‘
i b
The index i ranges over i = 1, 2, 3, - - -, to and including n. And

n has no upper bound. This is important. The symbol n and the
complex symbol n —> o are used interchangeably in the literature,
which interchangeability I fully accept, in the above context. There
is a context which does not permit n and n —> <« to mean the
same thing, and that is when the series a;/b; is such that the
partial sums do not converge. In that case the “limit of the summa-
tion” has no meaning, and the summation itself has a numerical
value only when n is fized. In the case we are discussing, (1), the
series is defined as convergent and the summation has an upper
bound and a limit even when n exceeds any bound, and n then ex-
ceeds a still higher bound, endlessly.

After such a paragraph, we need examples. Every so-called
‘transcendental’ scalar can be genetically expressed in the form
shown in (1), although the detailed structure of the fraction a;/b;
may be quite complicated. For a relatively uncomplicated example,
we have '

-1

The summation in (2) can be proven never to exceed 14/5, when
n increases without limit.
On the other hand, the innocent-looking fraction 1/i, when part
of the summation expression
n—> w
(38) = 5 becomes part of a summation that never stops
i

n
(2) e (epsilon, base of nat. logarithms) = lim X G !
i

growing; it exceeds every bound; hence it would be incorrect
to precede it with the term “lim” (limit), or to equate it with
any numerical or algebraical symbol whatsoever.

When it is understood that the series converges, we can call

o]
3 t; a closed or bound form, because when t; is given we have,
1
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in a finite number of symbols, all the information necessary to
expand the series endlessly. But, of course, to get the closed form,
we had to use the finite abbreviation “i” to represent the basic,
perfectly regular, endless system of integers 1, 2, - - -. If i did
not represent a perfectly regular, pre-known system, it would then

(=]

be impossible to expand = t; to produce a single, definite
[ 1
numerical scalar value.

Given Numbers. Mathematics textbooks often use the phrase
“given the number x ..” Let us expand a little on this phrase, the
meaning of which is usually taken to be self-evident. To say that
someone, say Jones, has given a number to someone else, say Smith,
means first of all that they both understand and accept a language
and a symbol system. It also means that Jones knows techniques
by which he can expand that number to any required degree of
accuracy, say to n places, and that Smith, independently, can also
expand that number to as many places, and that the two expansions
will be identical, term by term. It may be easier, in this case or
that, to make decimal expansions, but it can always be done also
in common rational fractions. Note that Jones can never give Smith
the endless expansion itself—only some closed form. Jones and
Smith are limited by the conditions of human communication.

Surprisingly, many of the professional mathematicians whom I
have consulted over the years resist and refuse to acknowledge
the foregoing operational facts. I have been accused of “philosophiz-
ing” about the matter. They have insisted that the endless expan-
sion itself can somehow be completed, communicated, and that it
alone constitutes the scalar number. Moreover, the requirement
for regularity of development of the expansion is not generally
recognized. A professor of mathematics at Michigan, with whom
I had already discussed these points in person and established some
rapport, sent me a well-drafted letter declaring that the successive
digits of the endless decimal expansion of a number could be de-
cided by a function on repeated throws of a pair of dice. He was
at first non-plussed when I pointed out that his procedure would
predictably produce different sequences each time it was performed
and so that it wasg, if anything mathematical, a variable rather than
a single, definite number. Soon, however, that reasonable man con-
ceded, “By golly, you're right!” Had he written a textbook before
that exchange, however, his “formula for producing a scalar num-
ber” might very well have gone on to classes and, perhaps, to
posterity.

_ Permutation systems. A permutation is an arrangement of some

or all elements of a prescribed set. Repetitions of the same element
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may or may not be permitted. The word ‘sphere’ (s,p,h,e,r,e) is a
six-place permutation of letters from the 26 of the alphabet. One
character, e, is repeated. The total possible variety of such six-place
permutations is just 266, or exactly 308,915,776, a large but clearly
finite number. Most of the arrangements do not spell words, of
course. The alphabet itself has a fixed, rather small number of
characters. Even the total variety of characters and signs available
for printing is limited. Obviously, an ‘infinite alphabet’ would
before long contain unrecognizable symbols and has in fact no
serious meaning.

Every expression defining a scalar number is a permutation
selected from a fixed “font’ of symbols, including digits and opera-
tors such as 2, 7, +, /, etc. Each character in the set is a single,
uncompounded, discrete character. The word ‘permutation’ implies,
of course, that the characters gain added significance from their
position within the arrangement.

Consider now the two digits 0 and 1 of the binary system. It is
a universally acknowledged fact that these two characters, plus the
point “.”, can define every numerical value that is possible in the
standard decimal system. This similarity extends in particular to
the issue of endless expansions, S

We regard the characters 0 and 1 from a permutational point of
view, neglecting for the moment their standing as scalar numbers
and digits. However, for continuity in the later argument, each
permutation is preceded by a point, so we write .01, 010, .11,
ete. Since the point appears in the same position in every case, it
has no bearing on the variety of possible permutations. Let us now
see what is the mathematical meaning of “all possible permuta-
tions of 0 and 1, to n places, when n = 1, 2, 3, - - -, and so on with-
out end.” We could start with n = 15, say, and then pick up the
smaller values of n in another order, but this would make sys-
tematic examination of all the possibilities more awkward. So we
start more naturally with n = 1.

Let “pm.” stand for “permutation”. Then a little experimenta-
tion quickly reveals the following structure:

All All All All
one-place two-place three-place four-place
pms. pms. pms. pms.
.0 00 000 D000
1 01 001 D001
10 010 and on so,
11 011 through
100
101 1111
110
111
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There is a simple law describing the quantitative growth of per-
mutational variety in the above system. The number of elemental
characters is 2. Taking j as index for the number of places, the
number of pms. in each row is exactly 21. It cannot be more. More-
over, there is a simple law for the total number of pms. in all rows
up to and including the j-th, and that is just 2i+* — 1. Thig last sum
shows that all the pms. in the system are technically countable, i.e.,
the pms. may be paired off with the integers i = 1, 2, 3, - - -. We
note here the elementary fact that the integers cannot be summed.

=] =]
That is, 3 i is a divergent series and has no total. Likewise, 32 s
i J

i
divergent, and indeed at a faster rate than 3 i. Nevertheless, the

o0
technical property of countability is preserved. We have sketched
the structure of any two-character permutational system. With
suitable substitutions in the algebraic variables, the same state-
ments hold for the base-ten, decimal system.

“New” permutations. It ‘happens’, i.e., it is a consequence of our
standard, highly abbreviated system for writing integers, that
every permutation of the set of base-ten digits, without a point,
defines an integer. Some pms. are redundant, eg., 03 = 38, but
otherwise there are no “spelling rules” needed.

Referring again to the base-two system, suppose now someone
comes along and claims that he has a way of constructing a new
pm., one not included in the countable system we have developed
above. To common sense, this appears to be impossible. If his new
entry has one place, how can it be other than 0 or 1? Obviously, it
cannot. If his new entry has two places, how can it be other than
00,01,10,0r11? Obviously, it cannot. Common sense is right.
If his new entry has n places, how can it be other than one of the
2" pms. which develop in our countable system? It cammot. Only
one ‘possibility’ remains. Does thig orderly, fully developed permu-
tational system suddenly fail if n has no upper bound? Why
should it?

Still, someone has made the claim, not only that he can produce
a new pm. not in any list we can devise, but that he has also
thereby proved that pm. systems in general are unorderable, that
their members cannot be counted off one-for-one with the integers,
and that he thus demonstrates that he knows of an infinity beyond
infinity. If we try to count his pms., he says, the integers will
become exhausted. “Yes sir,” the head of the mathematics depart-
ment of a Univ. of Illinois section said matter-of-factly to my face,
“The integers will become exhausted.” Believe it or not, Georg
Cantor made these remarkable claims stick with the world’s mathe-
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maticians of his time, and they stick unto this day. The effects of
the Cantorian grip on the professional mind have to be experienced
to be believed.

 Cantor’s diagonal argument. Here is how he proceeds. Cantor
invites us to make a list of permutations, and we are to take the
position that our list is so arranged as to include all possible pms.
Suppose we start:

1st pm. 000
2nd pm. 011
010

3rd pm.

Now, Cantor reminds us, one pm. ig defined as distinct from an-
other if it differs from that other in any one specified place. We
agree to this. “So,” he says, “because the first digit of your first
pm. is 0, the first digit of my new pm. (usually called z) will be
not 0 but 1. Therefore, z is not the same as your first pm.” “Now,”
says Cantor, “the 2nd digit of your 2nd pm. is 1, so I make the
ond digit of z to be 0. And so z is not your 2nd pm. Since the 3rd
digit of your 3rd pm. is 0, I make the 3rd digit of z as 1. There-
fore z is not your 3rd pm. And so on. I win.” Historically and up
to this date, ke has won. The horrendous “alephs” of his endless
infinities thunder through the evening skies of academe “wwith
hooves of steel”, as the songwriter put it,

You will doubt that anyone could be deceived by the foregoing
brief and transparent manipulations. Nor were they. Cantor’s his-
toric presentation was in subtly different terms. No discussion of
permutational structures preceded his demonstration. He ingsists
that he is dealing directly with the objects of the “real” (scalar)
number system, and that therefore their putative un-orderability
and un-countability are a matter of the gravest concern for all of
mathematics. He declared that his conclusions were forced upon him
by compelling logic, against his own will. He made it stick and, if
one believes him, one will also come to believe in the Banach-Tarski
spheres.

Let us go back to where Cantor says, “And so on.” Because, con-
trary to Cantor’s colleagues and even his critics, we have taken
pains to analyze and understand in advance the orderly and end-
less structure of our permutational system, and we do not have to
confuse it with “real numbers”, we are in a position to object to
his calm, “And so on.” “You, Cantor, have not seen our 4th pm.
yet. It has only three digits; there is not a “fourth” one to work
on; and your “new” pm. z = .1 0 1 certainly does appear in our
list.”

Cantor wants to wave aside our statements. “You don’t under-
stand,” he says. “All such arrays of digits are endless. You have
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only shown me three places. Every one knows that all real num-
bers lead to endless expansions . ..” We agk, “Can’t we just talk
about the pms. first? All numbers are permutations of digits and
other symbols. Don’t these laws apply?” And at about this point
your Cantor(ian) will declare, “Right now I don’t care anything
about permutations. What I want to do is prove to you the correct-
ness of the diagonal argument, and you are supposed to have writ-
ten the real numbers all down here and only the endless decimal
form will do and closed forms and finite rationals and things like
that simply do not matter. They do not matter because they will
not help my argument which can only proceed, when you have
already written down all the endless decimals and g0 on.” I do not
exaggerate. _

Now the refusal of the Cantorians to allow us to develop an
orderly listing of all scalars by taking one-symbol pms. first, then
two-symbol pms., etc., using whatever conventional digital and
operator characters are required, is truly ironic. That is because
Cantor himself had earlier made mathematical history by proving
that all of the first three orders of scalars, namely integers, ration-
als, and radicals, could indeed be ordered, and counted, and all had
the same “type of infinity”. It is worth noting that expositors today
describe this feat of Cantor’s without ever mentioning that he did
it by systematically putting all of the shortest forms first; then the
next longer, and so on. There is, as you may well conclude, no other
way of ordering an endless system. Whether subconsciously or not,
these writers manage to avoid displaying short vs long forms, by
sticking to extremely simple cases in ten-base numerals, or by
resorting to algebraic symbols which effectively conceal the lengths
of the corresponding numerals. At least a part of their interest is
clear: They have written many books giving many solemn proofs,
confirmations and consequences of Cantor’s argument that, alone
among all the scalars, the general form employing the summation
operator 3 cannot be ordered and counted. Their desire to believe
is strong, if not profound. The shibboleth, “The n-th digit of z is
different from the n-th digit of the n-th number in the list” acts
to paralyze the higher centers. Since the simple scalar numeral
“3” does not have a “n-th” digit the Cantorians “expand” it with
an infinity of zeroes after the point, for no other reason or purpose
than to sustain the illusions of the diagonal argument.

Decimal expansions. Let us look at the definition of an endless
decimal as “a definite scalar number”. First of all, the literature
is in fact replete with descriptions of the properties and limita-
tions of decimal expansions which state that some scalar numbers
cannot be exactly defined by decimals. Yet, in other references, the
endless decimals are given genetic status as scalar numbers. The
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endless decimals may be regarded as the actual objects of the real
number system, one authority puts it. Now these declarations
involve flat contradictions, of course, We could say that mathe-
maticians are only human, but that would explain nothing. There
is a reason, indeed a doctrinal reason, for this anomalous situation.

I want to say here that our modern system of decimal notation
is a truly marvelous mathematical structure, thousands of years
in development and brought to its present state only during the
Renaissance. (Shortly it will be refined a little more, when the
clumsy redundancy of “x 10¢” in so-called scientific notation will
be replaced by a suitably positioned single e for the power of ten.)
However, decimal fractions, wherein the issue of “expansions”
arises, are only one of several possible forms for fractions, and of
course everyone who is taught arithmetic is taught common frac-
tions, as well. Now it is an elementary but noteworthy fact that, if
we actually restrict ourselves to the ten digits and the point, many
common fractions can never be exactly shown or ‘given’ in decimal
form. Consider a/b = .2592---. This cannot be unambiguously
solved for two integers a and b. The best we could say is that a/b
is equal to or greater than 162/625 and less than 2598/10,000. Of
course this might be good enough for many practical purposes but
is not significant in a theory of rational numbers. Recall that the
Cantorian diagonal argument implies that a difference in the n-th
digit is meaningful, no matter whether that might be the 10th digit,
or the billionth, or when n increases endlessly. .

The integers a and b in the above example can be exactly defined
by the addition to the decimal system of a conventional but little
used symbol called the vinculum (or some equivalent). This is a
line over a set of decimal digits meaning that the permutation of
digits repeats endlessly in the expansion. In other words, the
vinculum is a symbol abbreviating the sentence preceding this one.
In many cases, writers modify and circumscribe a numerical ex-
pression by a couple of paragraphs of special, one-purpose exposi-
tory text and then appear to believe that all that complex of
meaning actually resides in the numerical itself. It reminds one of
the comedians’ convention where so many jokes were going about
that they were referred to as No. 29, No. 172, etc. When one fellow
heard “No. 17” he fell into a fit of laughter, since he had never
heard that one before! At any rate, the vinculum is an eddition to
the set of ten digits and the point; it permits us to drop one digit
from our example and show a/b = .259, wherefrom a/b is exactly
7/27, and nothing else. Without the vinculum, or some symbolic or
linguistic substitution for it, the “endless decimal expansion” can-
not define 7/27 or others of that type.
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When it comes to so-called irrational numbers, like /7, the
deficiency of the decimal expansion is far more striking. There
is no equivalent of the vinculum for irrationals. Nor can any be
invented. For rationals, the vinculum delineates a pattern which
survives the transcription from the common fraction into the
decimal fraction form, and from this pattern the closed form a/b
can be exactly recovered. When /7 is expanded in decimals, no
pattern survives, and hence the original expression cannot be un-
ambiguously recovered. This is all perfectly conventional and well-
known, you can check it with anyone, and indeed if you were so
inclined could prove it to yourself with some effort and practice.
The loss of pattern in an irrational is the cost of expanding it
decimally; in practice of course it is often advantageous because
of the ease with which decimal approximations can be compared
with one another, combined with each other, ete.

Perhaps it is not obvious what pattern there actually is in an
irrational like \/7. However, there are many ways to expand v
in forms in which the pattern becomes clearly visible and is never
lost. Continued fractions, mentioned above, are one. Another is by
the expansion of (6 -+ 1)%¥2 by the binomial theorem. There are
indefinitely many different ways of expanding V7 by the two
systems mentioned, and there are other systems, too.

So the “endless decimal expansions” cannot give us even a simple
radical exactly. But the other systems, including the endless con-
vergent summations, always provide closed expressions, not only
for radicals but for a still higher form of scalar number usually
called ‘“transcendental”. These include trigonometriec functions, for
example, so they are eminently ‘practical’ sorts of things.

I can assure you that every mathematician will concede the tech-
nical accuracy of the foregoing. On some points he may have to
do some ‘figuring’, or long-recalling, but he will concede. As I have
pointed out, for mathematicians no less than for the rest of us does
a contradiction between two propositions preclude their both being
carried in the same head.

So why have the “endless decimal expansions” (or binary expan-
sions, for that matter) been raised to such a status as to be equated
with scalar numbers themselves? The answer, I believe, is now
clear. Because the open admission that closed forms for scalar
numbers, which forms can obviously be ordered and counted, are
available in other expansion systems but not in the decimal or
binary type, would lead rather quickly to the exposure of the
number-theory fallacies in the Cantorian diagonal argument and
the deductions made from it. Remember the spheres.



