CHAPTER IV

COLOR

Through color, beauty in clothing becomes as fundamental an expression of the art impulse as painting, music, poetry or the dance. Color is the first thing which attracts or repels in a costume. It makes or unmakes the wearer more than any other element of her attire.

The sensation of color is universal, since it is derived immediately from our sense of sight; but full enjoyment of color as beauty depends upon the taste of the observer, the ability to discriminate, judge and understand the higher forms of achievement in its use, and this appreciation is the result of the training and exercise of the faculties involved.

There are a few people naturally endowed with a fine instinct for color—these we need not consider—but, for the majority who are guided by vague and uncertain feelings, we realize more and more that color should be made as definite a study as the art of music. Though, to the artist, color is the music of light and is often associated with music, a theory of color should be based upon qualities quite distinct from musical theory. At present, even the terms used popularly to convey color ideas are confusing and inadequate. John Addington Symonds has well expressed this in his little essay “In the Key of Blue.” He says: “The nomenclature of color in literature has always puzzled me. It is easy to talk of green, blue, yellow, red. But when we seek to distinguish the tints of these hues, we are practically left to suggestions founded upon metaphor and analogy. We select some object in nature which possesses the particular quality we wish to indicate and we talk of grass-green, olive-green, emerald-green; of sapphire, forget-me-not, turquoise, sky-blue, or else we use the names of substances from which the pigments are compounded; as yellow-ochre, burnt-sienna, lamp-black, madder, cinnabar, or to indicate very subtle gradations, the jargon of commerce supplies us with terms like mauve, magenta, peacock, Prussian-blue, crushed strawberry, or Venetian red. The most precise terms often fail. What the writer wants would be a variety of broad terms to express the species, tints of each genus
(hue). In such terms some of the colors are richer than others. Green, I think, is poorest of all; after verdant, it has to be contended with compounds of itself, like pea-green and those cited above. Blue fares better, with its azure, cerulean, celestial, amethystine. Yellow is still more fortunate, rejoicing in golden saffron, orange, flaxen, tawny blonde. Red stands at the head of the list, possessing a copious vocabulary of ruddy, rosy, russet, crimson, scarlet, pink, sanguine, mulberry, carnation, blushing. It will be noticed that all these words denoting tints are eventually derived from substances which have been accepted in common parlance."

This quotation shows both the poverty of ordinary language in describing color and especially the inexactness of terms which makes uncertain the meaning intended, since a term based on analogy, "sky-blue" for example, means one thing in Italy and another thing in New York. The need of a more accurate color terminology is obvious, for while a fanciful association of ideas is pleasing, more definite terms are necessary in order to convey clear mental images of color.

Color Theory.—Where there is light there is color. Color is refracted light, that is, light broken up into its component parts. Every ray of light is composed of a group of perfectly balanced color waves or vibrations, which are conveyed through the eye to the brain as color sensations. This may be demonstrated by letting a ray of sunlight pass through a glass prism and fall on a white surface; the result is a band of prismatic colors, blending almost imperceptibly into each other—forming a rainbow. This is also called the spectrum, the principal colors of which are red, yellow, green, blue and purple, with their intermediate gradations, in the order given. The sequence of the colors of the spectrum suggests a circle (Fig. 28). By using a second prism placed in a position to catch the refracted rays of light from the first prism the spectral colors will revert to white light. This is nature's clue to color study.

Fundamental or primary color sensations of the spectrum are green, red and purple. The term "primary color" (as distinguished from the mental "color sensation") is often used to designate the three principal pigments, red, yellow and blue.

Color Qualities.—By comparing the colors in the spectrum we find that they differ in three ways. (Study a good prismatic color chart or a prism.)
1. **Hue.**—The name of the color. The quality which distinguishes red, yellow, blue, etc., from each other, irrespective of other differences. The hue of any reddish color is “red,” and its redness is its hue quality; so, the hue of blue distinguishes all blue colors. This is a difference of warmth and coolness and red and yellow are called warm colors and blue a cold color.

2. **Value.**—The quality which distinguishes the relative amount of white and black in a color, irrespective of other differences. This is a difference of light and dark.

3. **Chroma.**—The quality which distinguishes the degree of intensity and brilliancy of a color, as compared with grayness. This is a difference of strength and weakness.

Pigments.—Pigments are any material means used to give rise to color sensations, such as paints, dyes, inks, etc. All pigments are more or less chemically impure, and therefore cannot perfectly represent spectral color. If tested by combining with each other the best pigments in spectral colors, the result will be gray and not white (compare with the experiment of the prisms). Material color is dependent upon the reflecting and absorbing qualities of the surface on which the rays of light fall.

Principal or “primary” pigments are red, yellow and blue. These colors cannot be obtained by the admixture of any other color pigments; but by various combinations with one another they produce all the other hues.

Secondary color pigments are orange, green and violet. These are hues made by mixing two principal colors. Orange is made of red and yellow, green of blue and yellow, and violet of blue and red.

Tertiary color pigments are citron, russet and olive. These colors are composed of all three of the principal pigments. Red predominates in russet, yellow in citron, and blue in olive.
Complementary Colors.—Colors which balance or complete each other, that is, when complementary color rays are combined they produce white, and when complementary color pigments are mixed their chroma is changed and they neutralize, or gray each other. Placed side by side they enhance each other by contrast. Complements are found opposite in the color circle. See diagram which is suggested by the sequence of the spectrum (Fig. 29).

White is a pigment representing the highest value or light.

Black is a pigment representing the lowest value or darkness absorbing all light.

![Color complements](image)

Gray is an impure form of white, therefore, neutral. It is a mixture of the opposites, black and white, or of pigments of opposite hues, which always neutralize each other.

The color couples or complements are (in hues): Green and red-purple; blue and yellow-red; purple and green-yellow; red and blue-green; yellow and purple-blue.

When these pairs are tested by the Maxwell discs they approximate white as nearly as pigments can. Maxwell color discs are discs of the standard colors made with a radial slit in order that one may be placed over another with varying degrees of area. The discs are used on a wheel, which, being spun rapidly, produces the effect of combining the color rays. It is used to test the relative proportion of different colors in combinations.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Color</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGENTA</td>
<td>RP 4/5</td>
<td>95</td>
</tr>
<tr>
<td>FUCHSIA</td>
<td>RP 5/7</td>
<td>96</td>
</tr>
<tr>
<td>SAGE</td>
<td>G 5/5</td>
<td>97</td>
</tr>
<tr>
<td>BOTTLE GREEN</td>
<td>G 3/7</td>
<td>98</td>
</tr>
<tr>
<td>TOPAZ</td>
<td>YR 5/5</td>
<td>99</td>
</tr>
</tbody>
</table>

Commercial and theoretical notation of colored samples
Pure Color.—Any color of high intensity or chroma.

Standard Color.—A color as it appears in the spectrum, at its maximum; (it is only approximated in pigments).

Tone.—The general effect of a color or group of colors, the result of the combination of hue, value and chroma. This is a much misused term.

Tint.—A high value of a color, that is, near white and above the value of the standard hue.

Shade.—A low value of a color, that is, near black and below the value of the standard hue; a term commonly misused to indicate hue.

Warm Color.—Color which gives a sensation of warmth. Colors containing red and yellow.

Cold Colors.—Opposites of warm colors or those containing blue. The color sensation of green is neither warm nor cold unless combined with yellow or blue.

Scale.—A gradated series of values, etc., by comparison with which the degree of a quality may be established.

Color Scheme.—A selected group of colors. Used interchangeably with the term color harmony.

It is only by actual experience in the use of the mediums of an art that one can understand that art. Although the exercises in color may be limited, they are essential in order to develop the faculties of seeing color and appreciating its use. This is accomplished by analysis and synthesis. Let us proceed from definitions to problems consisting of exercises and plates.

Materials.—For developing the color problems it is best to get the most reliable pigments possible, preferably moist water-colors in tubes.

A limited palette of standard red, yellow, blue, Chinese white and lamp-black will answer most purposes, because blue and yellow mixed make green, red and yellow make yellow-red or orange, red and blue make purple. But when it is possible to have a larger range of colors, the work in color will be greatly facilitated. Good pigments are rose madder, vermillion, Venetian red, burnt sienna and cadmium orange, pale cadmium, aureoline, gamboge, viridian (green), and cobalt blue, new blue and ultramarine blue. Muffin tins of six or eight divisions are very convenient for holding water and mixing color.
Exercise 1.—Flat Wash.—The secret of a good wash is the thorough mixing of the pigments with the water and getting the mixture to the right consistency—a matter of experiment. With a good mixture of color fill the brush well and put the color on paper from left to right, drawing a puddle of color down with the stroke. The paper should be held slightly tipped, the puddle at the end may be picked up with a sponge or a brush. The wash must not be worked over. Tempera or opaque colors are used in a thicker consistency than clear colors. Color Chart. Make flat washes of pigments in the spectral colors, green G, blue-green BG, blue B, purple-blue PB, purple P, red-purple RP, red R, yellow-red YR, yellow Y, and yellow-green YG, using water color or tempera of standard colors in red, blue, yellow, green, or better, the various pigments as suggested above.

Test the washes by a good prismatic chart. Cut them into oblongs or squares and mount them around a circle in prismatic sequence of hues. Draw diameters to connect the opposite complementary hues. See diagram (Fig. 29). This gives a hue sequence.

Exercise 2.—Oral or Written.—Using illustrative material of plain and color fabrics, paper and objects, name the hues.

Exercise 3.—Color Play.—In order to have freedom in the use of the medium it is necessary to play with the color, making all sorts of combinations. For example, mix red with all the other colors in turn. Do the same with blue, etc., then mix three colors with varying quantities of each. Make washes of all these experiments and name according to ingredients used. There are no rules for mixing colors, so, facility comes through practice. The results may be useful for future exercises in notation. Match hues of objects.

A Chart of Values.—Arrange a neutral scale of water-color washes, using Chinese white and lamp-black. Cut in oblongs and number from ten (white) to zero (black). Five is the middle value. There are an infinite number of gradations between white and black, but nine are enough for practical use.

Next, take any color, say R, from the chart of standard hues and by decreasing and increasing its value make a color value scale. Water or Chinese white may be added for high values and black may be used in the low values of the color. There will be nine steps cut in oblongs and mount to the right of the neutral scale (see diagram, Fig. 30). By comparing the neutral value scale with the chart of standard colors, we find that hues reach their maximum at different values.

Exercise 4.—Name the value of colors in objects about the room according to corresponding number in value scale.

A Chart of Chromas.—Use same color scale as in chart of values (red). Mount one-inch squares. Then taking the middle value of the hue red, decrease it in chroma or intensity by mixing it with its complement blue-green 5 until it becomes neutral 5. Next mix red 5 with blue-green 5 until its chroma is half way between neutral 5 and red 5, thus making R of middle value and middle chroma. The result may be tested with the Munsell middle color cards. Then, combine red with its complement to form intermediate chromas between the middle chroma and gray, and intermediates between middle chroma and red 5 (diagram, Fig. 31). By adding water or Chinese white, increase the value of the three intermediate chromas; and by adding black decrease the values; complete the chart according to Diagram 4. This may be simplified by omitting the value scale of chromas. Fig. 32 is another suggestion for a chroma chart.
Plate II

Textiles illustrating color design
If the ten hues of the scale are used by a class a complete diagram of 360 tones all notated or named will be the result, forming valuable reference material for color study.

![Chart of values](image)

We should now understand the three dimensions or qualities of color, hue, value and chroma. The next step is to recognize and become more familiar with them.

Notation.—Whatever system of notation is chosen it must be clearly understood and consistently adhered to. Munsell gives the following:
Hue is notated with the initial letter; for example, red, R, blue, B, etc.

![Chroma chart](image)

Fig. 31.—Chroma chart.

Value is indicated by a numeral placed above the line to the right of the initial. Thus R⁵ means red at 5 of the value scale.
Plate III

Suggestions for exercises in color design.
Chroma is shown by a numeral below the line, thus R means red of value 5 and a chroma one-half way between a full intensity and gray. In the chroma scale we have used only five steps. In order to keep them consistent with the value scale of nine steps we number them according to the diagram (Fig. 32).

![Diagram of chroma scale]

Fig. 32.—Development of chroma scale.

Color Classification.—Arrange a chart of mounted samples of fabrics in various hues. Classify or notate the colors as to hue, value and chroma (Plate I).

EXERCISES IN COLOR PERCEPTION THROUGH SYNTHESIS AND ANALYSIS

Exercise 5.—Using varied illustrative material classify colors according to hue, value and chroma—orally—students verify each other’s answers.

Exercise 6.—Memorize color by classification, that is, look at a color for a minute and notate mentally—produce from memory—then compare.

Exercise 7.—Reproduce color from dictation.

Exercise 8.—Mix colors of various hues, values and chroma; record the results. **Color Play.** Value scales may be made of the most pleasing hues.

Exercise 9.—Using gradated colored paper samples select values, hues and chromas from dictation.

All of these suggestions may be enlarged upon, making innumerable short exercises and greatly increasing the interest in the subject.

Practice in color perception is most necessary, for upon it depends the training of the eye, which is the source of joy in color. The development of the faculty of seeing and feeling color repays one richly, for the world takes on a new aspect when the eye is able to discern the beautiful qualities of color in the simplest objects as well as in the greatest works of nature and of art. A city roof view becomes a vision of loveliness. The gas tank in the distance which
was simply red to the young painter has possibilities of opalescent splendor for the colorist. Passing a green cabbage-patch an artist once exclaimed, "What a beautiful purple glow on those cabbages!" while his companion replied, "I see only green." The wonders of the artist's brush may be recognized as the realities of nature by a seeing eye.

"For, don't you mark? we're made so that we love
First when we see them painted, things we have passed
Perhaps a hundred times nor cared to see;
And so they are better, painted—better to us,
Which is the same thing. Art was given for that;
God uses us to help each other so,
Lending our minds out."

Color Design.—After one has become familiar with the properties of color, by learning to see them, one should practice the grouping of colors by making color schemes. This is the great test of one's sense of beauty, whether natural or cultivated. The instinct for using color will not develop by following dictated formulas—it grows through experiment guided by basic principles.

Design in color is the rhythmic or orderly arrangement of its properties (hue, value and chroma), in regard to relative position, area or quantity, and contour, and according to the principles of art, unity, variety and balance.

But in order to achieve a beautiful design one must have artistic impulse with a fine feeling for beauty. By "plunging in" and surrounding oneself with good examples of color design a sense of appreciation develops, which helps in recognizing and understanding the rhythmic relationships of the color qualities according to unity, variety and balance. Art training only provides the means of expression through which the creative impulse is to act, though sometimes through expression artistic impulse is awakened and nurtured.

Examples for the study of color design may be found in reproductions of paintings in art publications, illustrated magazines, books,¹ good modern posters, Japanese prints, figured textiles (Plate II), (the best of which are to be found among upholstery and draperies in larger stores), rugs, pottery, stained glass, old embroideries, illuminations and the realm of nature.

¹ The work of Brangwyn Dulac, Bakst, Boutet de Monvel and Howard Pyle is suggestive.
Simultaneous contrast
The aim of the following exercises is to direct the observation and to suggest color thought.

Exercise 10.—Take several examples of color combinations and notate or record as to hue values and chromas.

Exercise 11.—Copy in flat washes a series of combinations or schemes from beautiful examples.

Exercise 12.—Describe in words a beautiful color design observed out-of-doors—notate from description. A memory of color sometimes is more beautiful than a copy of color harmony.

Exercise 13.—Take one color and try various combinations with it.

One must be familiar with the principles of art which govern design in color in order to have a standard for comparison.

Rhythm.—Underlying life and art we find rhythm. Our contact with nature is based on rhythm—the wave vibrations of light and sound, when rhythmic, give pleasurable sensations, and beauty results. Our response to rhythm is largely instinctive. So an art expression, conveying a sense of pleasure, must be rhythmic in order that the result may be beauty, the aim of art. Rhythm is the power possessed by an orderly arrangement, or organization of colors to appeal to our sense of sight and our nervous system irrespective of association. For this orderly arrangement of color, nature is the greatest teacher. In her color designs, from sweeping landscapes and sky effects to a flower or an insect, we will always find the three guiding principles—unity, variety and balance. A rhythmic color harmony without all these is impossible.

Unity holds parts of the composition together by means of a unifying or common element. Brilliant effects of nature are enveloped in a wonderful ethereal haze. Nature welds her colors, unifying and blending everything. Unity gives strength and subtlety.

Variety through contrast gives life, vivacity and interest to a harmony. Combination of opposites is the simplest form of variety—warm with cold colors, weak with strong chroma, and a dark with a light. Red with the blue-green of the poppy; autumn’s purple asters and the golden-rod are suggestions of nature’s contrasts.

Balance is the principle which brings about the perfect adjustment of unity and variety through the arrangement of the area and position of the three qualities of color—hue, value and chroma. Colors which have unity in the three qualities may be used in more nearly equal balance of area and position. Nature illustrates this in the relation of the sea to the sky. Colors having great variety in their properties are arranged in unequal accent, i.e., balance—for example,
small spots of intense chroma are balanced on large areas of weaker chroma. Thus we see there are two kinds of balance, equal and unequal, but perfectly equal balance is dull—Nature avoids it.

Exercise 14.—Using illustrative material of all kinds make color notes of examples of unity, variety and balance by means of hue, value and chroma. Develop the exercises by indicating area and position of colors.

Unity will be found to exist, first, in related hues, values, or chromas, and second, in sameness of hue, value or chroma. Very intense colors may be unified by a sameness of chroma (Plate III, Fig. 8), while by using a very high or light value, almost any colors may be used together. Great contrast of hues, value and chroma are made possible through balance in the arrangement of area, or quantity, and position, as well as the combination with neutrals, i.e., black, white and gray. Variety is necessary in all good harmony.

Unity in sameness of hue, and variety in value and chroma, are shown in Plate III, Fig. 1; unity in related hues, as well as variety in the yellow and green, in Plate III, Fig. 2. Unity in related hues and contrast of complements are shown in Plate III, Figs. 3 and 4; balance by the arrangement of quantity is shown in Plate III, Fig. 4.

How important is the element of position will be seen by noting the effect of one color placed in juxtaposition to another. Place a piece of bright blue-green on a ground of white, black-gray and red-purple papers successively and note the effect (Plate IV). There is a rule in connection with the juxtaposition of colors, i.e., the law of simultaneous contrast, which is the modification of one color in juxtaposition to another through the effect upon the optic nerve. A hue is modified by the complement of its neighbor, because a color reflects its complement. Red and blue, when placed side by side, are affected thus—blue tends toward the green-blue scale or the reflected complement of red, while the red appears to have a yellow-red cast. Complements side by side strengthen each other according to this law. Note Plate III, Figs. 5 and 6, effect of blue with blue and with its complements.

Exercise 15.—Try experiments with colored papers and fabrics and discuss the results.

This law of simultaneous contrast should have important consideration in choosing the hues for a costume in relation to the wearer's coloring for the complexion is always affected by the complement of the neighboring color.
Balance expressed in area of chroma; unity in repetition of contours; variety in lines
Area is a means toward balance. A small area of warm color will balance a larger area of cool. A bright spot of intense color is sufficient for a much greater area of dull color. This gives accent or emphasis to a design (Plate III, Fig. 7). The more closely the areas agree the closer should be the hues, values and chromas.

Contour in color design may be used to add emphasis by attracting attention to a color spot through interesting form; it is a means toward variety in color masses (Plate V). Thus, a well-made bow of color may add much more to a gown or hat than the same thing poorly arranged. A pointed colored girdle is often better in a design than a round belt.

Texture.—The characteristics of different materials sometimes make or mar a color scheme. Cotton and woolen fabrics will be seen to absorb light and are dull, velvets reflect light and are lustrous, silks have the greatest play of light and dark. Often in a combination of colors the subtle qualities of texture modify the whole composition. Transparencies, like tulle and chiffon, are the designers’ most precious assets; they restore unity to almost any combination of colors and fabrics; they lend variety and sometimes control elements of area, position and contour.

Exercise 16.—Originate color arrangements by draping fabrics to illustrate the elements of area, juxtaposition and texture.

Exercise 17.—Make four tracings of a fashion figure illustrating a gown:
1. Apply a color design taken from nature or art.
2. Originate and apply a color scheme in one hue with change of value only (Plate VI).
3. Originate and apply a scheme showing unity through related hues.
4. Originate a design in colors illustrating variety in complements and unity in chroma (Plate II).

Similar exercises may be used to illustrate many other principles of color harmony. To show the importance of color in different dress designs, they are most valuable. Sometimes a gown looks mediocre in one scheme and when traced and colored in another combination it is quite distinguished (Plate VII). The color scheme must harmonize with the feeling in the design of the dress. Hence in selecting a design the color of the material should be kept in mind.

In the foregoing study of color theory an eye for color and color harmony should be acquired, and the natural instinct much accelerated and refined. But the aim of all this knowledge is to be able to express oneself in color by means of clothes. Color applied to
clothing cannot conform to definite rules. Some of the many variables which cause this difficulty are touched upon in the succeeding paragraphs.

The effect of color on the wearer cannot be too much emphasized in choosing materials for a costume. First, in relation to her outward appearance in regard to hair, eyes, complexion and figure. Many color suggestions have been made for different types; for instance, blue used to be ascribed to blondes, and pink to brunettes, etc., and color fashions change often, so the only safe guide is one's own judgment, or taste and experience. Always enhancing the best features and subordinating the less attractive ones is the only fixed rule in clothing. Hair of a defined blonde, brunette, or reddish hue becomes a part of one's color scheme; light brown hair does not become an important feature in the design, but calls for a more colorful background.

Health, age and the weather change the appearance of the complexion, hence hard and fast rules are not applicable. Experimentation is the only means of solving this problem. A clear, healthy complexion will look well in almost any setting. Pallor and sallowness are two bugbears to be dealt with. A pale complexion usually appears better in juxtaposition with a warm hue, but the color must not be too dark nor too intense. Sometimes sallowness is counteracted by dark blue or warm brown. Eyes, if clear, and of good color, should be featured; if light, with a pale complexion, they should be considered in connection with the principle of simultaneous contrast.

Exercise 18.—Experiment with color in relation to various complexes, by a process of selection, rejection, subordination and emphasis. Take notes and form conclusions.

A well-proportioned figure with good lines does not have to be considered, but extreme proportions must have the first place in the color scheme. A large woman must clothe herself according to her size. Warm, advancing colors must be rejected by the stout figure. Black is the commonly accepted garb of this type, but it has been found that discriminating hues of violet, blue, blue-green, or taupe are worn very successfully.

Whistler's portrait of the brewer's wife suggests color as a solution for the problem of the short, stout model; he transforms her to a tall, graceful form—apparently, by placing a touch of bright color on the tip of the lady's slipper. An optical illusion does it—the eye was caught first by the slipper tip, and as the glance wandered
Design in values, with black and white used for accents
upward to the face—unconsciously the beholder felt that the eye had travelled far and the lady's stature increased with the upward glance.

Color Suggestions.—Almost any color may be worn if there is a becoming transition from the clothing to the face by means of a transparent material. Black next to the face is almost impossible for anyone; a broken black is best, that is, a brocade or stripe effect which catches the light. Black and white combinations are often very effective. The sallow or pale should not wear black, unless very young. Gray is difficult for all except clear, rosy complexions. White becomes most people if it is not pure white, but is tinged by some hue. Bright red is stunning for evening wear for some brunettes and dazzling blondes. Millais' Portia illustrates the latter. Blue is the blessing of many American women, so much so, that abroad we are known by our blue costume. Green suits the intermediate type very well. Yellow is delightful for evening wear and in some of its neutralized hues is becoming to most types. Red-purples are the colors the intermediate type wears to best advantage. Composite, or colors of mixed hues, are worn more easily than pure colors. There seems to be, with some persons, a reaction of color on the mood of the wearer. Just as we are conscious of new clothing for a while, so we are all conscious of color changes in our costume for a time at least. If one feels dull, a bright color may bring change of mood. Much of the symbolical use of color seems, however, to be a matter of custom. For example, we use black for mourning, while in certain countries white is used, or purple.² Many of the great emotional artists choose their costumes carefully as regards color, that it may aid in expressing the mood they wish to portray. Color, in keeping with the occasion, is largely a question of color sensibility. So for evening dress we customarily wear light, gay colors. For business, on the other hand, woman's dress, while distinctly feminine, properly avoids anything in color or design suggestive of the social occasion. It is the spirit of the

² In ancient art, we find color used symbolically—the Egyptian figures wear colors indicative of their rank, while the characters of the early painters are robed in colors signifying the attributes the artists wished to express. Color symbolism is used for ceremonials and in allegory and poetry. There is some diversity of interpretation, but the following are common meanings: White, divinity, chastity, integrity and innocence; blue, fidelity and truth; purple, power, royalty; yellow, wisdom and fruitfulness; green, hope and envy; red-purple, spirituality and faith; black, wickedness and sorrow; red, passion, love, victory and joy. In combination they have distinct interpretations.
occasion that color should suggest, for color speaks very loudly for the wearer. Accessories may also play an important part in a costume; sometimes a string of beads, or a bit of colorful jewelry (jewelry that has its use, e.g., as a brooch, as well as its decorative value) will make a good design out of a simple costume.

In designing one’s clothing there is a wonderful opportunity for giving expression to the creative impulse. One may by experiment learn certain color harmonies which suit one as an individual and which serve as a partial guide; practice in purchasing ready-made garments where one can judge in advance how becoming the gown will be in relation to the complexion and figure, and how well designed the scheme will appear, will develop judgment regarding color in dress. The way to control color is to use color—power will come through experiment and experience. Experiment not only with pigment but with fabrics in various combinations as they might be used in dress. Make a point also of studying a costume as you see it worn, on the street and in assemblies, and as it is displayed in stores, and illustrated in books and colored plates of historic costume. So your confidence in your own color judgment as applied to dress will grow and bring increasing satisfaction.

Exercise 19.—Exercises in color designs for different complexions and for figures and for various occasions may be carried out in traced fashion drawings, or may be simply discussed and criticised.

REFERENCES

Color

AUDSLEY, C. A., COLOR HARMONY IN DRESS.
BELL, C., ART.*
BELZOLD, W. VON, THEORY OF COLOR IN RELATION TO ART.
BORGMEYER, C. L., COLORS IN NATURE.
BRUCE, F., MYSTICISM OF COLOR.
CHEVREUL, M. E., LAWS OF CONTRAST OF COLOR.
CHURCH, A. H., COLOR.
CLIFFORD, C. R., PHILOSOPHY OF COLOR.
DOW, A. W., COMPOSITION.
MUNSELL, A. H., A COLOR NOTATION.* Ellis. $1.25.
PHILLIPS, L. M., FORM AND COLOR.
PRANG, L., COLOR INSTRUCTIONS.
ROOD, O. N., ON A COLOR SYSTEM.
ROOD, O. N., MODERN CHROMATICS.
ROSS, D., THEORY OF PURE DESIGN.
SANDFORD, J. I., MANUAL OF COLOR.
SPEED, PRACTICE AND SCIENCE OF DRAWING.
WARD, J., COLOR HARMONY AND CONTRAST.
WILSON, COLOR MUSIC.
WRIGHT, M. H., MODERN PAINTING.
VANDERPOOL, E. N., COLOR PROBLEMS.
Same design in different color schemes

Plate VII