"By the Wayside"

American Crow predation on Black-capped Chickadees, Unusual Great Blue Heron mortality, Bald Eagle eats Common Loon eggs, Blue Jay kills European Starling, Pileated Woodpecker feeds on wild grapes, evidence of late nesting or renesting by Sandhill Cranes, partial albino American Robin from northern Illinois, tape-recorded broadcasts of nestling alarm and adult nest defense calls to attract Merlins.

AMERICAN CROW PREDATION ON BLACK-CAPPED CHICKADEES

American Crows (Corvus brachyrhynchos) are omnivorous. As opportunity presents, they feed on carrion, shellfish, snails, worms, small crustaceans, insects (especially beetles, beetle larvae, grasshoppers, locusts, and crickets), amphibians, reptiles, mice and other small mammals, wild fruit, grain and other seeds, nuts, eggs, and small birds (Bent 1946, Goodwin 1976, Klein 1983, Nocera 2000, Pough 1949). Crows are also capable of pursuing and killing other birds (Bent 1946, Putnam 1992), including House Sparrows (Passer domesticus), European Starlings (Sturnus vulgaris), recently hatched Spotted Sandpipers (Actitis macularia), and Mallard (Anas platyrhynchos) and Blue-winged Teal (Anas discors) ducklings (Bennett 1938, Cuccia 1984, Hamas 1984, Putnam 1992, Septon 1991, Sutherland 1982). Long (1990) even reported an instance of an American Crow killing a Cooper's Hawk (Accipiter cooperii).

Bent (1946) and Smith (1991) listed predators of Black-capped Chickadees (Poecile atricapillus), but did not mention American Crows among them. Here, I report observations of two instances of American Crow predation on chickadees in suburban central Dane County, Wisconsin (T7N, R8E, Sec. 1) on 27-28 Dec. 1995.

On the first day at 1300 hours, an adult American Crow was seen flying from a backyard bird feeder to a branch in a white ash tree (Fraxinus americana) approximately 16 meters away and 6 meters above the ground. The crow carried a dead Black-capped Chickadee in its bill. The chickadee was nearly decapitated and had been partly eviscerated, with some internal organs hanging down to one side. The crow paused after landing, positioned the chickadee on the branch under its right foot, surveyed the area, then pecked several times at the chickadee.
The crow then ingested the now detached head of the chickadee in a single swallowing motion and the remainder of the bird in approximately four successive motions. The crow remained on the branch for about three minutes surveying the bird feeder and surrounding area and then flew out of sight.

During this time, four other chickadees were observed in another ash tree near the bird feeder. All four birds watched the crow, but remained nearly motionless. The chickadees returned to the feeder six to seven minutes after the crow flew off. A Purple Finch (Carpodacus purpureus), apparently unaware of (or unconcerned with) the crow, visited the feeder for about two minutes while the crow was in the ash tree occupied with the dead chickadee. No other small birds were observed around the feeder during this time, although a variety of species routinely used the feeder and could be expected. Perhaps other species were frightened away during the initial attack.

At 1300 hours on the second day, I heard the “high zee” alarm calls characteristic of Black-capped Chickadee anti-predator responses (Ficken and Witkin 1977, Smith 1991). Upon investigation, I observed an American Crow (possibly the same individual) feeding on another chickadee atop the bird feeder. Four other chickadees were observed sitting motionless in the nearby...
ash tree. It is unknown if the chickadee flock involved in this second attack was the same flock that was involved in the previous predation observation, but I believe it was not.

The crow decapitated the chickadee and swallowed the head. The internal organs were consumed next, but the remainder of the chickadee was abandoned when a nearby apartment door was opened, disturbing the crow. The remains of the chickadee fell to the ground, where they were scavenged a few minutes later by a second American Crow that had been watching from a nearby rooftop.

American Crows were not observed at or around the bird feeder before the reported incidents, although they routinely roost in a nearby conservancy area and scavenge on nearby parking lots. The predatory behavior appeared to be a new behavior, at least at the feeder in question.

A variety of factors, including the relatively high intelligence of corvids (e.g., see Zach 1979), probably influence predatory behaviors of American Crows. Two important factors are the spatial and temporal availability of birds as prey, both of which are likely to vary within habitats (Hamas 1984). The observed bird feeder is relatively isolated with respect to other feeders, making the presence of the chickadees and most other small birds unpredictable and highly variable. The feeder location may create a situation, by fostering accidental encounters or trial-and-error learning, that results in temporary but profitable food patches for the crows, as suggested by Hamas (1984).

It is not surprising that American Crows might opportunistically feed at a bird feeder, particularly in the winter when other animal foods (i.e. insects, carrion, hibernating species, etc.) may not be readily available. Such behavior could have competitive advantages; feeding on higher energy sources during the winter could result in increased fitness and production of more offspring during the breeding season. However, crows were not observed at the feeder during the remainder of that winter or in subsequent years (the feeder was maintained through the spring of 2000). Nor did the predation attacks appear to affect subsequent visitation rates by chickadees or other small birds. Together, these factors suggest that my observations were of chance encounters rather than repeated instances of learned behavior. —Dreux J. Waterolen, Bureau of Integrated Science Services, Wisconsin Department of Natural Resources, P.O. Box 7921, Madison, WI 53707-7921.

LITERATURE CITED

Bald Eagle Eats Common Loon Eggs

Late June 2000, Burnett County—In late June, a neighbor on the Burnett County lake beside which we live discovered a Bald Eagle (*Haliaeetus leucocephalus*) sitting on the nest of a Common Loon (*Gavia immer*) in front of her house. The nest had been an item of much observation for the prior several weeks. Eggs of the first loon nesting were lost to an unknown reason. The loons now were on their second nesting attempt.

When I arrived in the neighbor’s yard, the eagle was eating what we assume was egg content, taking it with its bill from the nest. The material the eagle brought up in its beak appeared to be thin and runny; there were no pieces of substance to be seen. The eagle occasionally had stringy bits of what appeared to be vegetable matter in its beak after a feeding retrieval, probably material used to construct the nest.

The eagle later tossed from the nest fragments of what appeared to be egg shell. We were observing this with a 40–50× scope from about 150 yards. After feeding for perhaps 20 minutes, the eagle bent from the artificial nesting plat-

form and moved its beak briskly through the lake water, then flew off.—Jim Williams, 5239 Cranberry Lane, Webster, WI 54893.

BLUE JAY KILLS EUROPEAN STARLING

1 March 2000, Horicon, Dodge County—At about 10:15 A.M., I observed two Blue Jays (*Cyanocitta cristata*) land on a platform feeder in my backyard. They chased away four House Sparrows (*Passer domesticus*) and two Dark-eyed Juncos (*Junco hyemalis*). The jays fed on cracked corn and opened several sunflower seeds. Four European Starlings (*Sturnus vulgaris*) joined the jays, and aggressive behavior occurred from each species. One of the jays struck a starling on the head. The starlings fed briefly, and one of them fluttered to the ground. It stood for a few seconds, and then fell over, apparently dead. The jays departed and I went outside to look at the starling. It had one small drop of blood on the top of the head, apparently from the blow of the jay.

This observation made me recall a report by a coworker of a Blue Jay killing an adult Tree Swallow (*Tachycineta bicolor*). The swallow was drinking at a backyard birdbath when a jay landed nearby. The jay pecked the swallow on the head and it fell into the water. The jay flew away, but the swallow was dead. My friend speculated that the swallow may have recently fledged from a nest box in his yard, and had not yet learned of jays’ aggressive behavior.

Although jays are frequently observed eating eggs and the small young of other birds during the nesting season, these observations are of aggressive behavior at feeding and drinking
sites, not killing for food. Clearly, most small birds are aware of Blue Jay aggressive actions and give them ample room.—Richard A. Hunt, 309 Birchcrest Road, Horicon, WI 53032.

PILEATED WOODPECKER FEEDS ON WILD GRAPES

19 October 2000, near Plainfield, Waukesha County—Around 3 p.m., I happened to hear a Pileated Woodpecker (Dryocopus pileatus) calling from the front yard of the Hamerstrom homestead, so I went to one of the upstairs windows to see where it was. It was clinging to a small box elder tree at the edge of the lawn by the roadside, about six feet off the ground. As I watched, I observed that the bird would reach out and pluck something, then retract and reach out again. I then realized that the box elder was covered by a wild grapevine and that it was the grapes that were being eaten, one at a time. The bird appeared to pluck at one group of grapes six or eight times before moving its position to hit the next group. It fed at about three different groups of grapes before it flew off to perch on an ancient dead elm stump.

I observed this Pileated come back to this same tree two more times and perform the same eating pattern at about the same time each day. One time, I heard a car coming and was curious to see if this would flush the bird, but it sat tight and resumed dining on its grapes after the car was past. I wonder if this behavior has been observed by others?—Deann L. De La Ronde, N6789 3rd Ave., Plainfield, WI 54966.

EVIDENCE OF LATE NESTING OR RENEETING BY SANDHILL CRANES

4 July 2000, Montello, Marquette County—Returning from shopping in Westfield, I noted a pair of Sandhill Cranes (Grus canadensis) several hundred meters ahead feeding in emerging silage corn. The site was the juncture of County Highway Y and Eagle Road, roughly 10 kilometers north of Montello. This was my home road and I routinely see this pair feeding here from March to August each year.

The surprise came as I drove past some 20 meters from the pair. Between them marched a downy, orange colt whose head, when raised, did not reach the knees of the parent birds. I estimated it at no more than 18–20 centimeters tall, which seemed very small for this time of year.

I had recently been to the Necedah National Wildlife Refuge to visit a student involved with the Whooping Crane reintroduction project and had observed the collection of roughly three-week-old Sandhill Crane chicks being hand-reared there for imprinting on ultralight aircraft destined to lead them to Florida. The young cranes I'd seen at Necedah were fully two and a half times the height and four to six times the mass, with gray flight feathers and contours beginning to emerge, and a much less orange or downy appearance than the young crane in the field before me. I would have guessed the youngster in the field to be roughly five to eight days of age, which would have required the parents to be incubating as late as 29 June. This would place egg laying at about 31 May, given the 30-day incubation period for the species.

I have censused 16–30 square miles of Marquette County annually since 1982 for the International Crane Foundation (ICF) counts. It is not uncommon to have counts that occur past 15 April show low call numbers due to
nesting activity of adults. This pair of cranes (a pair whose nest, territory, and feeding location I've known for 12–15 years) had gone silent by the time of this year's crane count, coincidentally held 15 April, which is usually an indication that nesting has commenced. Given that evidence, I think it is more likely the colt I observed was the product of a late renesting effort rather than the pair being six weeks behind in nest initiation.

I called Scott Swengel at ICF to inquire whether young colts seen this late in summer were a common phenomenon for the species and the area. He recalled a case of another pair in the Westfield area that successfully hatched a third clutch on or about 1 July in 1983 or 1984, after loss of the first two nests. He also reported that one nest in the Briggsville area was laid on 30 May 2000 and is a suspected renesting.

While renesting is documented for the species, it is still a rare enough aspect of behavior to warrant description. As an epilogue, I saw the same colt on 11 July in the same field. While clearly older and larger, it was still significantly smaller and more orange than those I'd seen in Necedah six weeks earlier.—Philip Whitford, Biology Dept., Capital University, 2199 East Main St., Columbus, OH 43209.

Partial Albino American Robin from Northern Illinois

1 June 2000, Paw Paw, Lee County, Illinois—I observed a white robin foraging at the Paw Paw, Illinois Country Club (Figure 2). It was immediately obvious that it was an American Robin (**Turdus migratorius**), with its familiar walking posture and erect stance, along with its close association with others of its kind. In talking with Bob Woodrick, I was informed that this bird was first observed on 8 April 1997, and, much to my surprise, a bird of similar appearance reappeared at the same locality on 16 March 1998, and was photographed at that time. During the following years, additional observations and photographs have been made.

The following field marks were noted. It was a normally sized male, with a distinctive black half-moon-shaped crescent over the eye, which gives the impression of having a "black eye," along with several distinct black blotches on the posterior portion of the head. When folded, the primaries have several distinctive black markings. The bill appears normal for a male, but with a brighter yellow-orange appearance. The tarsi coloration appears normal. The throat and forehead are distinctively white, as was the entire dorsal surface of the back. The undertail coverts are whitish, while the breast is white with distinctive brick red splotches scattered throughout.

Possible Nest Parasitism Observations for Giant Canada Geese

The following observations were incidental to an intensive 168-hour study
of Giant Canada Goose (*Branta canadensis maxima*) sexual behavior conducted from 15 March to 5 May 1996 at Blendon Woods Metro Park, Columbus, Ohio. Observations were made within a fenced 48-hectare wildlife refuge within the park from a large public observation shelter overlooking a 4.5-hectare man-made lake with a resident population of roughly 180 Giant Canada Geese. Though the elevated shelter was only 5 meters from the lake, shelter entry was by way of paths that hid people from the geese, and people were not permitted to leave the paths. This arrangement permitted close observation of goose behavior virtually unaltered by human disturbance, other than supplemental feeding provided by park personnel in the form of five bushels of shelled corn per day placed at the water’s edge on the northwest side of the lake.

From 0800 to 1400 EST on 5 April 1996, I was in the west observation shelter, the site where I spent all my time recording data on the sexual behavior of geese. This date marked the first week of any visible nesting activity at the park, though intensive territorial fighting for nesting territories had been prevalent in the preceding weeks. Only one nest was complete and being incubated as of this date, though several more had been started and contained incomplete clutches of eggs.

On 3 and 4 April, I watched the female of a well-known pair constructing her nest in a grassy area surrounded by blackberry canes on the near edge of the island, roughly 25 meters from the observation shelter. Elevation of the
shelter made it possible to see into the nest with a spotting scope to determine egg presence. The male of the pair constantly stood nearby and defended her from neighboring males that intruded into the territory. This is a densely nesting colony of geese. Island territories were small, limited in number, and fighting for them was intense since they were the only sites relatively free of predation. During the prior two days of observations, the female had laid two eggs and spent most of her time adding materials to the nest. Normal behavior of Canada Geese is for the female to begin incubation only as the clutch nears completion, frequently after the fourth egg is laid. Knowing this, I was not surprised when the goose and her mate left the nest territory to go to the feeding site across the lake.

Minutes after they left, I observed a single goose climb the bank of the island and sit down upon the nest. I was surprised at the absence of the male, but I still assumed this was the female of the territorial pair owning the nest; neither female was marked, so it was a natural assumption. The female in question occupied the nest for 25–30 minutes, pulling in grasses and other materials and adding them to the nest in typical fashion for the species. I never questioned that all wasn’t normal until the territorial pair that belonged to the nest returned from feeding. They loudly drove off the interloping female that had been working on the nest with aggressive calls and actions, followed by a triumph display.

Obviously, since she was driven away and the returning pair clearly claimed the site, the nest this female had been working on was not her own. Yet, while this invading female had been working on the nest, she had ample opportunity to lay an egg in the nest—and I believe did so—since there were three eggs visible therein when she left. There is always a possibility that she may have only exposed a previously unseen egg that had already been present, but I believe it unlikely. Laying eggs in another bird’s nest is a common action for some dump-nesting species, such as Wood Ducks (Aix sponsa), and nest-parasitizing waterfowl like the Redhead (Aythya americana). Anecdotal evidence of this behavior in domestic fowl goes back to the barren hen “Henrietta,” recanted in Owen Wister’s “The Virginian.” However, construction upon, and use of, an active nest of another goose by a Canada Goose is unheard of.

To the best of my knowledge, one female laying her eggs in another Canada Goose’s active nest has not been previously documented, though Brakhage (1965) reported “dump nests,” collections of eggs in inactive nests, as part of his study. The distinction is that an inactive nest will not lead to true nest parasitism, since the eggs will not be hatched by another bird, whereas use of an active nest implies intent to parasitize by having the other bird incubate the eggs and raise the young.

Eggs not in nests, called drop eggs, are common early in the nesting season at sites where Giant Canadas nest. During the week preceding these observations, 8–10 drop eggs had appeared on the 20×50-meter island, scattered throughout numerous territories (exact numbers are uncertain since crows made rapid work of removing these high-nutrient items if territorial geese weren’t nearby.). Drop eggs are believed to be laid by females that have not yet gained territories or
nests and may well not have a mate to assist in territorial acquisition. Only a very slight change in behavior is necessary to move from this drop egg deposition to dump nesting and then to a nest-parasitic reproductive strategy. The same physiological cues that draw a female to her own nest when she is about to lay an egg may make an unattended nest a natural place for a female without a nest to deposit her egg.

Once incubation begins, a female Canada Goose stays on the nest 95% to 98.6% of the time (Aldrich and Raveling 1983) and leaves the territory only to get water and bathe, so there is very little opportunity for nest parasitism. Additionally, it should be noted that parasitism after incubation began would be less likely to lead to successful hatching of the deposited egg(s) if eggs already in the nest began incubation more than a day or two earlier than parasitic eggs. On the other hand, since females who have begun nesting will leave the nest unattended before the clutch is complete, this provides a window of opportunity when another female would have access and opportunity to lay eggs in a nest not her own, and might do so with reasonable certainty that incubation had not yet commenced. Such a strategy would certainly convey an evolutionary advantage over simply abandoning the egg as a drop egg, since it might well hatch in another bird’s nest. Thus, under Darwinian logic, one would expect such behavior to be selected for due to increased survival of genes for this behavior once the behavior was established. It would be interesting if one were able to follow the actions of this single female closely and find out if this was an isolated act or one she repeated with other nests, and whether the same female or separate individuals were involved in this and the following observation. Even more interesting would be finding out if her/their offspring showed similar behavior.

Though the bird in question in the prior observation was unmarked, there is circumstantial evidence that she might have repeated the process several days later at another nest. On 9 April, a reliable volunteer naturalist at the park said she had seen an unmarked female sit in and work on the nest of 4HOT (4HOT was the black-lettered alpha-numeric code on this goose’s white neck collar) during a period of 40–50 minutes on 8 April, while 4HOT and her mate were off feeding. She was one of the few collared birds present and thus was well-known to park personnel and volunteers. 4HOT nested just 12 meters from the north observation shelter, so was easily watched. She had been on her nest off and on for the preceding two days and had a partially complete clutch of eggs. Again, the observation of the strange female on the nest corresponded to the period when egg laying had begun but the clutch in the nest was incomplete, providing a relatively rare opportunity for nest parasitism. 4HOT began incubation two days later and continued until the nest was destroyed by an unknown predator on 26 April. The other female was never seen on the nest again. Since eggs had not been counted prior to her presence on the nest, there is no certainty that one was laid. However, 4HOT’s nest held six eggs when incubation began, at or above the norm for this subspecies, indicating that six eggs had been laid in four to five days by a species in which one egg every 1.5 days is the normal deposition rate (Cooper 1978). It is
possible that 4HOT laid all six eggs, but given the observation of the other goose on the nest and the short time frame, it is also quite possible that she did not. Only mitochondrial DNA tests or gene comparisons would prove that an egg was added, but the timing, actions, and circumstantial evidence pique the interest and hint at a possibility of a second incident of intentional nest parasitism within this population of the species. The interloper was driven off by 4HOT and her mate when they returned. As in the earlier observation, this goose added materials to the active nest of another goose, and possibly an egg as well. I probably would have thought nothing of this reported observation had I not witnessed such a similar event on the preceding day. Given these observations, it may be necessary to question prior conclusions of my own concerning rapid egg deposition rates observed for geese at this study site (Whitford 1998).

While numerous past studies have detailed egg deposition rates, clutch size, and nesting success for Canada Geese, few have intensively watched individual nests for prolonged periods. The latter form of study would be necessary to observe and recognize this form of nest parasitism in a natural setting. Only intense studies of marked birds or nest-by-nest DNA analysis of large numbers of eggs will finally permit us to accurately determine the extent of nest parasitism in Giant Canada Geese, if it does occur with some regularity.

I would like to acknowledge the kind assistance of Mr. Jim Giggi, Blendon Woods Metro Park Manager, and the Columbus Area Metro Parks for making this study possible. I also thank Naturalists Leslie Phillips and Karen John-son for their daily assistance in keeping me informed of observed changes in nesting status of pairs on the few days I could not be present.—Philip C. Whitford, Biology Department, Capital University, Columbus, Ohio 43209.

LITERATURE CITED

TAPE-RECORDED BROADCASTS OF NESTLING ALARM AND ADULT NEST DEFENSE CALLS TO ATTRACT MERLINS

Tape recordings of adult Merlin (Falco columbarius) vocalizations have been used by several researchers to detect Merlins (Oliphanth and Thompson 1978, Doolittle 1992, Caley 1994, Sollensky 1997) but, to my knowledge, no studies have used nesting alarm calls or adult nest defense calls for this purpose. I here report the successful use of nesting alarm and adult nest defense calls to detect Merlins at 18 Wisconsin nest sites.

Using a portable Marantz Superscope tape recorder with an attached 48-centimeter parabola (Dan Gibson Company E.P.M. model 650), I recorded an adult Merlin pair as they defended their nest while researchers (Caley 1994) banded their young. Recordings of the nestlings’ alarm calls
were also made at this time. Media Development personnel at the University of Wisconsin-Eau Claire edited the original tapes to produce a series of five-second recordings with one-minute intervals between calls.

Susan Caley (1994) and Matthew Solensky (1997) found most of the 18 nests visited during this study, which were located in urban Duluth, Minnesota, and in Superior and rural north-central Wisconsin. Following Balding and Dibble (1984), I made three broadcasts separated by one-minute intervals at each nest site to detect Merlins either aurally or visually. The tape was broadcast at 100 decibels (measured 1 meter from the speaker) at an estimated distance of 100 meters from the nest on days with no precipitation and a wind speed less than 16 kilometers/hour. The nestling alarm call recording was broadcast at six of the 18 nest sites, and the adult nest defense recording was used at the remaining 12 nest sites. Broadcasts were made during the incubation or early nestling period of the breeding cycle (20 June to 11 July 1994). Since all 18 nests were successful, it was assumed that at least one adult would be incubating, brooding, or near enough to hear the broadcast.

Merlins were detected at five of six nest sites (83.3%) following broadcast of the nestling alarm calls. The adult birds always vocalized, but flew closer only twice. The site where there was no detection resulting from the playback was an island on Trout Lake, Vilas County, Wisconsin. On this occasion, a male Merlin later vocalized near the nest site during the banding of the young. It is not possible to discern whether the male was present and did not respond to the broadcast or was out of hearing distance when the broadcast was given.

Interestingly, a female Merlin was observed perched near her nest on an island in the Turtle-Flambeau Flowage. When I broadcast the nestling alarm recording out of visual sight of the female, behind a nearby island, the female responded immediately, flying to the island where I was concealed and vocalizing repeatedly. I then moved behind the island with the nest, out of visual sight of the female, and re broadcasts the chick alarm, whereupon the female flew immediately back to the nest, vocalizing repeatedly.

Merlins were detected at 10 of 12 nest sites (83.3%) following broadcast of a recording of adult nest defense calls. The birds usually vocalized (n = 9) and flew toward the broadcast from the nest or a nearby perch site (n = 5). No Merlins were heard or seen at the two nest sites where there were no detections following the broadcast.

The nestling alarm and adult nest defense recordings I used seemed to be nearly as effective as a recording of an adult female Merlin used by Matthew Solensky (1997) to locate 40 nests in north-central Wisconsin during the courtship period. Three of these 40 nests were discovered after he had failed to detect Merlins with broadcasts earlier in the year. His detection rate for Merlins at known nest sites was 92.5% (37 out of 40 nest sites). This may be an overestimate because there might have been other undiscovered nests in the area.

The data from this study are limited, but they suggest that nestling alarm or adult nest defense calls may be as effective as other vocalizations for detecting Merlins. This study suggests investigation of other combinations of
Merlin vocalizations with different parts of the breeding cycle.

I am indebted to Susan Caley and Matthew Solensky for sharing the location of Merlin nests with me, and to Tom Doolittle for sharing his knowledge of the Merlins. I wish to thank Tim Hirsh, Eugene Jacobs, and Patricia Duyfhuizen for editorial suggestions. My thanks also to the University of Wisconsin-Eau Claire for the equipment and technological assistance of the Media Development Center. I also wish to acknowledge the valuable assistance contributed by my wife, Nancy, during this investigation.—Terry Balding, Biology Department, University of Wisconsin-Eau Claire, Eau Claire, WI 54702.

LITERATURE CITED

