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Abstract. Several North American oaks reach the western limit
of their distribution in gallery forests dissecting grassland
ecosystems. Tree establishment and success in these systems
may be limited by frequent drought, fire, grazing, and competi-
tive interactions with grasses. On the Konza Prairie Research
Natural Area, two oak species with distinct leaf morphologies
and water relations, bur oak (Quercus macrocarpa) and chinqua-
pin oak (Q. muehlenbergii), dominate different areas of gallery
forests. At distributional extremes for other oak species, co-
occurring oaks show similar differences in leaf morphology, water
relations, and small-scale distribution. In this paper, we review
the physiological responses of native Kansas oaks to parameters
such as light level and temperature to clarify the ecophysiological
mechanisms underlying tree distribution patterns near the edge of
their range.
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Introduction

A wide range of environmental factors can limit species
distribution. Examination of the physiological performance of
plants at distributional extremes can clarify the mechanisms by
which species maintain themselves in such locations, as well as
identify common plant responses to selective variables in similar
systems (Billings, 1973). Examination at distributional limits
can also simplify study, since physiological performance can be
matched to a few, easily identifiable factors (Hadley and Smith,
1983; Smith, 1985; DeLucia, 1987; DeLucia and Smith, 1987;
Graves and Taylor, 1988; Day et al., 1989; Groom et al., 1991,
Williams and Black, 1993). Thus, ecophysiological research has
been dominated by work in systems that are considered extreme
and dominated by abiotic forces, with clear species gradients. In
this paper we explore the ecophysiological basis for tree distribu-
tion in the tallgrass prairie, where two eastern deciduous forest
oaks near their western limit in distribution (Fowell, 1965). We
argue that elucidating species-specific responses of these oaks to
light and temperature, both of which interact with water rela-
tions, considered the primary determinant of oak distribution in
this area (Abrams, 1986, 1990, and 1992), will clarify the
physiological mechanisms determining the western limit of
eastern North American oak distribution.

Light, temperature and water relations directly and complexly
interact at the leaf level (Fig. 1). Leaf temperature is determined
by the energy balance of the leaf, which is determined partially
by the amount of direct beam solar radiation impinging on the
leaf surface, as well as by ambient air temperature. Direct beam
radiation contains the wavelengths of light that are of photosyn-
thetic importance (photosynthetic photon flux density, PPFD;
wavelength from 400 to 700 nm). Leaf temperature, in turn,
strongly affects plant water status, since the amount of water
vapor within the leaf that will pass through the stomata and into
the atmosphere is highly sensitive to temperature (Campbell,
1977; Nobel, 1983; Jones, 1992). Leaf temperatures may be

influenced by altering stomatal opening, which changes the
degree of evaporative cooling, or by altering leaf angle and leaf
shape, which alters interception of solar radiation and the
convective exchange properties of the leaf (Campbell, 1977,
Nobel, 1983; Heckathorn and DeLucia, 1991). However, direct
beam irradiation and large infrared radiative inputs from
surrounding vegetation and the ground can elevate leaf tempera-
ture well above air temperature (Nobel, 1983), which may
increase water loss. Plants vary in their ability to function at very
low tissue water potentials; nonetheless, water limitation almost
always decreases plant growth and may alter competitive
relationships (Kaiser et al., 1981; Kaiser and Heber, 1981;
Kuppers, 1984; Epron and Dreyer, 1990 and 1992; Simoes and
Baruch, 1991; Barton, 1993). It is apparent from their interac-
tions that water relations should not be uncoupled from plant
physiological responses to the primary variables (light and
temperature) that determine water status. Therefore, species that
separate along a moisture gradient could have unique responses
to the environmental variables driving water status. Comparison
of these physiological responses between species could lead to a
more mechanistic understanding of species distribution.
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FIG. 1. Interactions of temperature, light, and water relations at
the leaf level. Box (A) contains leaf physical characteristics that
influence convective exchange properties. Box (B) illustrates
leaf characteristics (g, = stomatal conductance to water vapor, D
= concentration gradient of water vapor between leaf and
atmosphere, W = leaf water potential) that influence leaf
evaporative exchange properties.
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Oaks in the Flint Hills of Kansas

In the Flint Hills of NE Kansas, bur oak (Quercus macrocarpa)
and chinquapin oak (Q. muehlenbergii) dominate gallery forests
lining stream courses that dissect the tallgrass prairie. In this
region, mean annual rainfall is considered sufficient to allow for
eventual forest coverage, but frequent drought and fire, as well as
grazing, limit the expansion of tree species into the surrounding
grasslands (Weaver, 1954; Axelrod, 1985; Abrams, 1985, 1990).
Since European settlement and subsequent fire suppression,
forest expansion has increased by nearly 40% (Abrams, 1988 and
1992; Knight et al., 1994). In addition to frequent drought and
fire, woody species establishing in tallgrass prairie systems must
often endure growing season conditions of extreme temperatures
and high photosynthetic photon flux densities (PPFD) (Knapp,
1985), as well as competition for water from surrounding grasses
(Bragg et al., 1993). Bur oak is generally more successful in
lowland portions of gallery forest drainages, where overall
productivity and canopy closure are greater, whereas chinquapin
oak tends to establish in more often in open, upland locations
(Abrams, 1986; Bragg et al., 1993), often associated with reduced
phosphorus availability (Killingbeck, 1984, 1988). These
differences in small-scale distribution along a putative moisture
gradient are accompanied by distinct differences in leaf morphol-
ogy, with bur oak having large, deeply lobed leaves, and chinqua-
pin oak having smaller, shallowly scalloped leaf margins (Fowell,
1965). A similar pattern of distribution occurs in other oak
species in the Ouichita Mountains of Oklahoma (Dooley and
Collins, 1984).

Past research dealing with oak physiological ecology in this
arca has focussed on aspects of plant response coupled to water
relations (Abrams, 1986; Abrams and Knapp, 1986; Knapp,
1992; Bragg et al., 1993). Bur oak is known to adjust tissue
osmotic characteristics in response to drought (Abrams, 1990)
and has stomata that are capable of responding rapidly to short-
term changes in sunlight level, which might minimize water loss
during shade periods (Knapp, 1992). Similarly, chinquapin oak
is known to maintain lower tissue osmotic potentials than bur
oak, indicating even greater drought tolerance (Abrams, 1990),
and appears to have a greater ability to establish in sites prone to
lower plant water potential (Bragg et al., 1993). These studies
show both species to be well adapted for establishment in
tallgrass prairie systems, but possibly susceptible to replacement
by more shade tolerant tree species if disturbances such as fire
are suppressed (Abrams, 1985; Knight et al., 1994). As valuable
as these studies have been, the exclusive focus on water relations
has led to a need for studies of ecophysiological light and
temperature responses. Indeed, we propose that species specific
responses to light and temperature in bur and chinquapin oaks
could strongly influence the establishment, maintenance, and
local distribution patterns of oaks in tallgrass prairie systems.

In our research, we hypothesized that bur oak should be better
able to photosynthetically adjust apparent quantum requirement
(Q,; mol O, per mol light) in low light, as many tree species do
(McMillen and McClendon, 1983; Kozlowski et al., 1991),
because distribution patterns indicate that bur oak establishes in
areas of higher productivity with greater canopy closure (Abrams,
1986; Bragg et al., 1993). Because all North American tree
species use the C, photosynthetic pathway, how efficiently a
species captures and utilizes light is more important ecologically
than differences in photosynthetic pathway (Bjorkman, 1981;
Kozlowski et al., 1991). By adjusting Q, to be more efficient at
low PPFD and reaching photosynthetic light saturation at lower
light levels, some species can maximize integrated canopy carbon
gain (Bjorkman, 1981; McMillen and McClendon, 1983;
Kozlowski et al., 1991). We found no differences within or

between bur and chinquapin oak in Q. We did find that bur oak
had greater plasticity in leaf morphology in response to light
environment (via changing specific leaf mass, leaf area, and leaf
shape) than chinquapin oak, as well as higher overall photosyn-
thetic capacity (Hamerlynck and Knapp, 1994). These morpho-
logical responses might maximize whole canopy photosynthesis
by keeping inner canopy light levels above the photosynthetic
light compensation point (Horn, 1971; McClendon and
McMillen, 1982; Kozlowski et al., 1991) or optimize convective
heat exchange efficiencies of leaves exposed to full sun
(Campbell, 1977). We also expected chinquapin oak, which
establishes in drier, more exposed locations, to have a higher
maximum photosynthetic temperature tolerance (T__; T, in
Schreiber and Berry, 1977; Smillie and Nott, 1979) than bur oak.
We found that chinquapin oak consistently had higher T__(46° -
50° C) than bur oak (43° - 48° C) throughout the growing season,
even in locations where both trees grew together (Hamerlynck
and Knapp, 1994). This suggests that physiological temperature
tolerance in these oaks is controlled more by genetic than
environmental factors (Pearcy et al., 1977; Seemann et al., 1984,
Williams et al., 1986). Similar measurements of plant high
temperature tolerance have helped explain patterns in phenology
and species coexistence in other systems (Monson and Williams,
1982; Monson et al., 1983; Williams et al., 1986). Under field
conditions, bur oak tended to have leaf temperatures closer to air
temperature, while chinquapin oak, especially smaller individu-
als, often had leaf temperatures elevated 6° to 10° C above
ambient air temperatures (Hamerlynck and Knapp, 1994). These
findings indicate that temperature and light do seem to be
important direct factors, independent of water relations, in the
distribution of oaks in tallgrass prairie gallery forests
(Hamerlynck and Knapp, 1994) and might have implications in
the distribution of other oak species.

In North America, oak diversity is highest in the southeastern
portion of the continent, with the edges of oak distribution
represented by only one or two species (Aizen and Patterson,
1990). Recent research in oak ecophysiology has examined
differences in nitrogen allocation and whole canopy photosynthe-
sis (Hollinger, 1992; Reich et al., 1991); shade tolerance
responses and succession (McClendon and McMillen, 1982;
Callaway, 1992); photosynthetic performance and limitations in
response to drought (Bahari et al., 1985; Abrams et al., 1990 and
1994; Epron and Dreyer, 1990 and 1993; Ni and Pallardy, 1992;
Kubiske and Abrams, 1993; Pallardy and Rhoads, 1993); and the
relationship between light environment and photosynthetic and
anatomical characteristics in relation to species distribution
(Kloeppel et al., 1993; Walters et al., 1993; Ashton and Berlyn,
1994). In all these studies, each oak species differed in leaf
morphology, with one oak having large, deeply lobed leaves, and
the other having small, shallowly lobed leaves. Therefore,
examining leaf traits in other oak systems at other edges of oak
distribution, and noting if the suite of traits noted here in the
gallery forests of Kansas - leaf morphology correlated to differ-
ences in photosynthetic performance, temperature tolerance, and
leaf temperatures - may further elucidate the physiological
mechanisms controlling the distribution of oaks at the edge of
their range.
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