SWITCHGRASS: A POTENTIAL BIOMASS ENERGY CROP FOR ETHANOL PRODUCTION

Roger A. Samson and Joseph A. Omielan

Executive Director and Research Scientist, Resource Efficient Agricultural Production (REAP)-Canada, Box 125, Ste. Anne de Bellevue, Quebec, H9X 3V9

Abstract. One of Canada’s leading strategies for CO₂ reduction is the development of a biomass energy industry. Dedicated energy crops need to be used for the large scale, sustainable development of this industry. Switchgrass (Panicum virgatum) has been identified as the model herbaceous energy crop species by the United States Department of Energy. It is a warm season (C₄) perennial grass which is native to the southern Canadian prairies and Eastern Canada. Switchgrass has many characteristics which make it suitable for a biomass energy crop including: high productivity; low N, P, and K requirements; high moisture use efficiency; stand longevity; soil restoring properties; disease and pest resistance; adaptation to marginal soils; and low cost of production. A cellulosic ethanol industry based on warm season grasses, unlike the grain ethanol industry, offers significant potential for CO₂ reduction. Energy crop production from C₄ perennial grasses will increase carbon storage compared to current land use by increasing above and below ground biomass and soil organic matter levels. CO₂ emissions will be reduced substantially compared to a fossil fuel based industry because switchgrass is a renewable feedstock with a high energy output/input ratio and because lignin (the byproduct of the cellulosic conversion) is used as an internal energy source for the conversion process.

INTRODUCTION

Using a complete material cycle analysis, Pimentel (1991) concluded that ethanol production from grain does not provide energy security, is not a renewable energy source, is uneconomical and increases environmental degradation. While other crops such as trees or perennial grasses are better than annual grains in terms of energy and the environment, the technology to economically convert these materials into ethanol has been inadequate. However, recent advances in cellulosic conversion technology has made it possible to efficiently convert dedicated energy crops such as fast growing trees and warm season grasses into ethanol. With further investment in cellulosic conversion research it is anticipated that a cost competitive process with gasoline could be achieved by the end of the decade (Figure 1). The main processes in conversion of the cellulosic biomass are: 1. steam or chemical pretreatment (which breaks the lignin bonds and makes carbohydrates available for enzymatic conversion); 2. enzymatic hydrolysis (converts the carbohydrates into fermentable sugars); 3. fermentation; 4. distillation; 5. residue processing (the lignin that is leftover after the extraction of ethanol is mechanically dewatered and burned to provide the steam and electricity to drive the entire conversion process).

Figure 1. Past and projected costs (1988 basis) for ethanol and gasoline (Lynd et al. 1991). The range of future gasoline prices is based on U.S. Department of Energy oil gasoline price projections. For ethanol, prices are estimated from past research and an aggressive program for future research. The range shown arises from assumed capital recovery, with the higher values being for a capital recovery factor typical of private financing and the lower values being for a capital recovery factor more likely for municipal or utility financed structure.

Developing Low Cost Feedstocks

The recent advances in cellulosic conversion technologies is stimulating interest in low cost farm derived energy feedstocks. Crop production strategies need to be developed which are as efficient as possible in capturing sunlight (solar energy) and storing it in plants (solar battery). Focusing on energy efficiency will lead to low cost energy feedstock production. Desirable characteristics for energy feedstocks include:

1. Efficient conversion of sunlight (solar energy) into plant material (solar battery);
2. Efficient water use as moisture limitation is one of the primary factors limiting biomass production in most of North America;
3. Capture of sunlight for as much of the growing season as possible;
4. Minimal external inputs in the production and harvest cycle (i.e. seed, fertilizer, machine operations and crop drying).

We know that to achieve these objectives several issues need to be considered:

1. There are two main photosynthetic pathways for converting solar energy into plant material: the C₃ and C₄ pathways. The C₄ pathway is approximately 40% more efficient than the C₃ pathway in accumulating carbon (Beadle and Long 1985).

2. C₄ species use approximately 1/2 the water of most C₃ species (Long et al. 1990).

3. In northern climates, sunlight interception is more efficient with perennial plants because annual plants spend much of the spring establishing a canopy.

4. Perennial crops require no annual establishment costs (seed, tillage etc.) and are N efficient because N can be internally cycled to the root system in the fall (Clark 1977). Nutrient leaching and surface nutrient loss through soil erosion is minimal with perennial crop production compared to annual crop production. C₄ grasses have a higher N use efficiency than C₃ grasses (Brown 1985).

Based on these criteria, the fastest, most resource efficient crops to grow would be perennial C₄ grasses. Since 1986 the US Department of Energy (DOE) has evaluated herbaceous and woody biomass crops for biomass production. It is not surprising then that the lowest cost feedstock production that has been achieved has been with switchgrass (*Panicum virgatum*), a C₄ prairie grass. Several studies have estimated costs at $30.00/tonne (Sladden et al. 1991, Parrish et al. 1990).

Rationale For Switchgrass As A Bioenergy Feedstock

High Productivity:
When appropriate cultivars are chosen, productivity is high across much of North America. Yields of 20 to 30 t/ha have been obtained with lowland switchgrass ecotypes in Alabama (Sladden et al. 1991). In studies near the Canadian border, winter hardy upland ecotypes of switchgrass have produced yields of 9.2 t/ha in northern North Dakota (Jacobson et al. 1986) and 12.5 t/ha in northern New York (Thomas and Lucey 1987).

Moisture Efficient:
Switchgrass uses water approximately twice as efficiently as traditional cool season grasses (Stout et al. 1988, Parrish et al. 1990). Its root system extends up to 3.3 metres and has a greater distribution of root weight at deeper soil depths than other prairie species (Weaver and Darland 1949).

Low N requirements:
Compared to cool season grasses, optimal yields of switchgrass can be obtained with much lower N requirements and response to N may not be observed in the early years of production (Jung et al. 1990). Nitrogen levels in switchgrass biomass are in the order of 0.5%N at full maturity (Balasko et al. 1984) which is approximately 1/2 that of most cool season grass species.

Low P requirements:
On soils with low levels of available P, warm season prairie grasses have higher dry matter yields and have P concentrations approximately 1/2 that of cool season grasses (Morris et al. 1982). An adaptive advantage of C₄ grass species is their use of mycorrhizal symbiosis for nutrient uptake, which may help explain the abundance of C₄ plants in prairie soils low in available nutrients (Hetrick et al. 1988).

Low K requirements:
Switchgrass has a lower critical K level than cool season grasses and seldom shows response to K fertilizer (Smith and Greenfield 1979).

Stand longevity:
Adapted switchgrass cultivars harvested for hay have excellent persistence, minimal disease and insect problems and good cold tolerance.

Acid soil tolerance:
Switchgrass will tolerate extremely low pH soils (<5.0) which do not support the growth of cool season grasses or legumes (Jung et al. 1988)

Low harvest costs:
In studies in the northern United States, 1 cut per season maximized biomass yields from switchgrass while most cool season grasses generally require multiple cuts (Wright 1990).

Soil restoring:
Switchgrass is one of the dominant species of the North American prairie that built some of the most productive and rich soils in the western hemisphere.

High ethanol yield:
Switchgrass has a higher combined cellulose and hemi-cellulose content than cool season grasses or legumes (Cherney et al. 1988).

Farmer friendly:
Compared to other warm season grass species, switchgrass is inexpensive to seed and establishes well. It has good seeding vigor, low seed costs, low seeding rates and good herbicide tolerance.

Environmentally friendly:
Switchgrass provides nesting cover and seeds act as a food
Table 1. Promising Warm Season Grasses for Biomass Production and their Native Soil Moisture Class (adapted from White and Madany in Illinois, 1981).

<table>
<thead>
<tr>
<th>Dry Prairie</th>
<th>Dry-Mesic Prairie</th>
<th>Prairie Mesic</th>
<th>Wet-Mesic Prairie</th>
<th>Wet Prairie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Bluestem</td>
<td>Indian grass</td>
<td>Big Bluestem</td>
<td>Big Bluestem</td>
<td>Prairie Cordgrass</td>
</tr>
<tr>
<td>Little Bluestem</td>
<td>Little Bluestem</td>
<td>Indian grass</td>
<td>Indian grass</td>
<td></td>
</tr>
<tr>
<td>Prairie Sandreed</td>
<td></td>
<td>Switchgrass</td>
<td>Switchgrass</td>
<td></td>
</tr>
</tbody>
</table>

source for birds. The re-establishment of prairie grasses will improve water quality in several ways: annual grain crops responsible for increasing erosion potential will be replaced, ground water nitrate levels (Ramundo et al. 1992) and surface P loading (Sharpley and Smith 1991) will be reduced. Pesticide impacts on wildlife would be reduced because herbicides would be used probably only in the establishment year unlike the annual use of insecticides and herbicides in field crop production.

Other Promising Warm Season Grasses As Biomass Feedstocks

Switchgrass is only one of 1745 C₄ grass species in the world that have been identified as suitable for growing in temperate climates (Stander 1989). In the U.S. alone there are over 300 C₄ grass species (Stander 1989). Probably many of these other native and exotic C₄ perennial grasses hold much potential as switchgrass. However, if we view “nature as the standard” we should develop mixtures of C₄ grasses using plant materials from North America. The major advantage of switchgrass is that it is relatively inexpensive and easy to establish. However, other common tallgrass prairie species, such as big bluestem (Andropogon gerardii) and Indian grass (Sorghastrum nutans), also have high levels of productivity (Gould and Dexter 1986, Stubbendieck and Nielsen 1989, Jung et al. 1990) and deserve significant research attention.

The seedling of all three of the major tallgrass prairie species in mixtures rather than using a switchgrass monoculture may play an important role in reducing potential disease and insect problems if large scale biomass production occurs. In the higher rainfall areas of the prairie region, eastern gamagrass (Tripsacum dactyloides) has also proven to be very productive (Faix et al. 1980, Kaiser 1989) and may have a role in the implementation of low input, polyculture biomass systems.

In the native prairie, switchgrass is generally classified as a wet-mesic prairie species (Table 1). Other species are better adapted than switchgrass to the drier or wetter prairie conditions. For example prairie sandreed (Calamovilfa longifolia) has outyielded switchgrass in the dry regions of the northern U.S. Great Plains when 25-35 cm of annual rainfall occurred (USDA 1989). As well, cold resistant, upland switchgrass ecotypes appear to be less adapted to wet prairie conditions than southern lowland switchgrass ecotypes. Using soil moisture as a classification system, we can get a good understanding of how switchgrass, as well as a number of other promising native warm season grasses, are adapted for biomass production (Table 1).

Compared to other warm season grasses, cold tolerance may limit switchgrass productivity. Prairie cordgrass (Spartina pectinata) has a more northern native range than switchgrass. Studies have identified a significant amount of chilling tolerance in prairie cordgrass which enables earlier canopy development (Long et al. 1990). However, published yield data is limited on this species. Nitrogen fertilization of native prairie cordgrass stands in Nova Scotia have produced yields of 7.7 t/ha (Nicholson and Langille 1965). Small plot biomass studies in England have produced yields of 8 to 23 t/ha (Long et al. 1990).

Canada’s diverse climatic conditions will require a number of C₄ species to be developed as biomass feedstocks. The natural range of prairie sandreed, switchgrass, and prairie cordgrass provide a good idea of how each of the three species has its own unique adaptation. A good starting point for a biomass plant material program in Canada would include these three species as well as big bluestem and Indian grass which have a similar native range as switchgrass. Prairie ecologists could significantly contribute by collaborating with biomass researchers in developing species and mixtures for various climatic and soil conditions. Prairie ecologists are also uniquely connected to the best gene banks for prairie grasses, the existing prairie remnants. Collecting seed from a large number of productive species and accessions would also contribute to increasing diversity in biomass prairie plantings.

Using Biofuels For CO₂ Abatement

The potential exists for warm season grasses as biofuel feedstocks to be one of the most important energy supply changes for reducing CO₂ emissions. Energy production
from warm season grasses changes CO₂ emissions in two ways:

1. it displaces fossil fuels and their high CO₂ emissions;

2. it returns the prairie landscape to a landuse that mimics more closely its original condition, thereby regaining a significant portion of the original carbon lost to the atmosphere through conversion of carbon rich soils to agricultural use.

The production of cellulosic energy contributes a small amount of CO₂ to the atmosphere but only to the extent that fossil fuels are used in their production. The vast majority of the CO₂ released from the conversion of biomass is merely CO₂ that has been sequestered from the atmosphere by plant growth - the carbon contained in the above and below ground biomass. In contrast, large amounts of CO₂ released by fossil fuels are from long term carbon storage. The substitution of cellulosic energy crops for fossil fuels would thus result in a relatively large net reduction of atmospheric carbon dioxide (Turhollow and Perlack 1991).

For Canada the greatest potential to reduce CO₂ emissions would come from using switchgrass or other cellulosic biomass crops as a replacement for gasoline derived from the oilands projects (Table 2). There is no potential for the grain ethanol industry to reduce CO₂ emissions in an equally significant way. U.S. DOE studies indicate that corn ethanol produces 79% of the CO₂ emissions of gasoline (Marland and Turhollow 1990). If included in a 10% blend, this would reduce CO₂ emissions by 2.1%. Any major reduction in CO₂ emissions from fossil fuels will only come from going beyond the 10% ethanol blend. Even if the grain ethanol industry had a significant potential to reduce CO₂ emissions it would be limited by both land base availability and by-product market saturation (making production costs prohibitive). The most significant difference in reducing CO₂ emissions between switchgrass and grain ethanol comes from by-product utilization of the two processes. In the switchgrass ethanol cycle, lignin is the byproduct which can be burned to provide sufficient steam and electricity to complete the entire conversion process. In the grain ethanol cycle, fossil fuel is used for the conversion process and the by-product (distilled grain) is used in an intensive beef feedlot industry. The most recent analysis of the cellulosic ethanol fuel cycle indicates a 91% reduction in CO₂ emissions compared to reformulated gasoline and 4.35 units of output energy are produced for each unit of fossil energy required (Bull et al. 1992).

Table 2. Relative CO₂ emissions per unit of energy for various energy types.

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>kg C/GJ Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilsands</td>
<td>30.0</td>
</tr>
<tr>
<td>Coal</td>
<td>24.7</td>
</tr>
<tr>
<td>Petroleum</td>
<td>22.3</td>
</tr>
<tr>
<td>Natural gas</td>
<td>13.8</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>1.9</td>
</tr>
</tbody>
</table>

From Hengeveld (1989) and Turhollow and Perlack (1991)

SUMMARY

Switchgrass is a resource efficient, native, perennial grass which has significant potential as a feedstock for the development of a cellulosic ethanol industry in Canada. It could play a major role in reducing Canadian CO₂ emissions by 1) increasing carbon storage in soil and vegetation compared to present land use and 2) enabling the production of a liquid transportation fuel that will reduce CO₂ emissions by approximately 90% compared to gasoline. The development of this industry could play an important role in helping Canada
solve some of its most important problems including job creation, energy security and global warming.

ACKNOWLEDGEMENTS

REAP-Canada’s biofuel development work is funded by Agriculture Canada and Natural Resources Canada in Ottawa through the Green Plan’s climate change program. We are grateful for the cooperation from the US Department of Energy, US Soil Conservation Service Plant Material Centers and private collectors for donations of plant material and documentation.

LITERATURE CITED

